
 
 
 

 

Advanced Diploma of Industrial Data 
Communication, Networking and IT 

52782WA 
(DIT) 

Module 02 Practical Assignment Lab Instructions 
 
 

Industrial Data Communications 
 
 

V2 
 

 
Question 3: Modbus Basics 

 
 
 

Created By: EIT Date: 
 

Reviewed By: MADDOX Date: 15 MAR 2016 

Reviewed By: John Lawrence Date: 04 June 2020 

 
 

 
 
 
 



QUESTION 3 MODBUS BASICS 
(15 marks) 

 
Getting Started 

• Logon to Electromeet (Follow the How to Connect to 
RemoteLabs_Electromeet_HTML5_Remote_Lab instructions document) 

• The software is installed on Remote Lab 1 & 2 
 
Hardware: 

• Normally we would run the MODBUS simulation software (client and server a.k.a. 
master and slave) on two separate computers, via a null modem cable. However, in this 
case we are running them both on one machine, via a null modem simulator. 

 
Software used: 

• Modbus Poll v3.60 

• Modbus Slave v3.10 

• TAL Virtual Null Modem(taltech.com)  

• All the above is installed on the Remote Lab computer 
 
Modbus 

• You can complete this practical assignment by logging into the Electromeet Remote Lab 
computer as per above. 

• You do not need any specialised hardware of your own, as was the case in the past. 
 
We will be using COM1 and COM2  

• Other pairs may be set (COM5 and COM6 say) and the Software activated ... there is no need 
to change these numbers! 

• Windows below (in Modbus Poll and Slave) show PORTS 7 and 8 – I prefer not to use these 
last 2 port numbers.  

 
Open TAL Virtual Null Modem by clicking on the icon (on desktop or taskbar)  

  
 

 
 
 
 

1. Use the default settings for COM1 on COM Port - A and COM2 on COM Port - B 
a. Then Tick the two Boxes: 
b. “Auto-activate when launched” and “Auto-minimize when activated” 

 



 
 

2. Now click the “Activate” button and the window will be minimized to taskbar. It may still be 
minimized in Task Bar from previous Users so check there please.  

 
3. Now run both the MODBUS Master (MBPoll) and the MODBUS Slave (MBSlave) by clicking 

on the desktop icons. 
 

 
 

The easiest approach is to run them side-by-side, adjusting them to fit in next to each other like 
this 
 

 
 



Let’s start with the Slave. 
 
First, we are going to configure the way in which the information is displayed, viz. (a) binary (all 1’s 
and 0’s) and (b) Base 0 i.e. protocol address notation, starting from 0 (as opposed to PLC addresses, 
starting from 1). 
 

1. Click Display and select Binary, then click Display again and select Protocol Addresses (Base 
0). You will end up with something like this: 

 

 
 

2. Now hit F2 or click Setup-> Slave definition. Set the slave up as follows. 
 

 
 
The slave address in this case is 1. Function Code (FC) = 02 (Input status). Address = 1 refers to the 
logical address of the first coil, and length = 8 means that there are 8 consecutive coils (numbered 1 
thru 8). This represents an 8 bit number in our case. 
 

3. Check / Replace the address with the value 1 and the Length with the value 8 These will now 
show up as follows 
 



 
 

To edit any coil, just double-click on it and toggle the radio buttons on Edit Coil between on and off. 
You can do this once the simulation is running. 
 

 

 
4. Click Connection->connect and set up the serial communications parameters as shown. 

Ensure that RTU mode is selected for now. Then click OK. Alternatively you might want to 
refrain from connecting until the Master is also ready. 

 

 
 

Check the port settings carefully, as the Master side settings have to match. The configuration 
here is 9600,8,O,1. 

 



Let us Focus on the Master side. 
 

5. Click Display and set it up as follows (the same as for the Slave). 
 

 
 

6. hit F2 or click Setup-> Poll definition. 
 

 
 

In the poll definition above, coils 1 to 8 (starting with 1, total =8) on slave 1 will be read once every 
second. 
 

7. Make sure the correct function is selected. Click OK. 
 



 
 

8. Hit F3 or click Connection->connect. Select COM7 and ensure that the settings are the 
same as for the Slave. Also ensure that RTU mode is selected for now. 

 

 

 

If all goes according to plan, connection will be established. 
 

If a red ‘timeout’ message appears on either side, do the following. 

• Click Disconnect on both sides 

• Check that the communications parameters (baud, etc.) are the same for both sides 

• Reconnect on both sides 
 

If a red ‘illegal’ message appears on either side, do the following. 

• Click Disconnect on both sides 

• Check if the poll definitions match (slave addresses and function codes, modes) 

• Check that the inputs read by the Poll program are a SUBSET of the coils defined by the Slave 
program, and not the other way around 

• Reconnect on both sides 
 



9. 14.Now setup you slave input values to represent 1111 00112 = F316. (You will setup the 

equivalent binary input as below) 

 
 

10. 15. Click Display->communications and observe the traffic between master and slave. 
Remember that it is as seen from the master’s perspective, the display on the slave will be 
the other way around i.e. Tx on the master will be Rx on the slave. 

 
 

 
 

 



Tx refers to the Modbus request, because we are looking at the Master here. 0x means Hex. 

• Slave = 0x01 (i.e. 1 decimal) 

• Function code = 0x02 (2 = Read input status) 

• Initial coil address = 0x0001 (i.e. decimal 1 protocol) 

• Number of coils = 0x0008 

• CRC = 0x280C 
 

Rx refers to the Modbus Rx response: 

• Slave = 0x01 

• Function = 0x02 

• Byte count = 0x01 

• Coil status = 0xF3 = 11110011 

• CRC = 0xE1CD 

 
11. Without much further assistance, retry all the steps but reconfigure both applications to 

ASCII mode, to read an 8-bit Digital Input (Function 2) register that reads the value F316. 

Question 3 (a): Capture and paste the ASCII communications (command & response) frames. 
 

12. Without much further assistance, retry all the steps but reconfigure both applications to 
RTU mode again, to read an 8-bit Digital Input (Function register that reads the value F316. 

 

Question 3 (b): Capture and paste the RTU communications (command & response) frames. 
 
Question 3 (c): Discuss differences and similarities seen between ASCII & RTU communications 
frames as captured in previous two questions. 

Tip: to clearly see the differences/similarities, it is advantageous to map the two encoding systems 
against each other in tabular format. 

 
Question 3 (d): If compared to the RTU frame as described in the Modbus RTU standard, does the 
captured data conform to the standard RTU frame – Yes or No? 
Clearly explain your answer in one sentence. 
 
Question 3 (e): If compared to the ASCII frame as described in the Modbus ASCII standard, 
does the captured data conform to the standard ASCII frame – Yes or No? 
Clearly explain your answer in one sentence. 
 
 

End of Practical Question 3. 

  



Modbus TCP (OPTIONAL, for the adventurous) 

Although not required for this Lab, if you do wish to play with MODBUS over TCP/IP, you can do a 
loopback by writing and reading from IP address 127.0.0.1 Port 502 (which is a PC’s default local 
loopback IP address) with both MODPOLL and MODSLAVE. 

 
The purpose of this document is to introduce you to the Modbus/TCP concept. You may, 
however, use other registers, etc. Also take care to use the IP address in bold (above) and not 
the one in the screenshots below. 

 

 
 

 
 

The steps to get to the above results, are broken down below. 

1. Run the Slave first and set it up EXACTLY as in the pictures above. Start the connection. 
2. Now run the Modbus Master (MBPoll) by clicking on the desktop icons. 



 
3. MBPoll opens. 

 

 
 

Click Display and set it up as follows. 
 

 



 

Hit F2 or click Setup-> Poll definition. This time we will use FC03. 
 

 
 

In the poll definition above, holding registers 0 thru 9 inclusive (protocol) i.e. 40001 thru 40010 
will be read once every second. Click OK. 

 

 
 

Hit F3 or click Connection->connect. However, instead of specifying a COM port, we will specify 
TCP/IP and the IP address of the Slave (192.168.2.4 in this case, but different for you). Note the 
Well-Known Modbus port number of 502. Do not change this. 

 



 
 

If all goes according to plan, connection will be established. If a red ‘timeout’ message appears on 
either side, do the following. 

• Click Disconnect 
• Check the IP address and port number 
• Reconnect 

 

If it still does not work, click Display->Communication and check if you are at least getting 
messages sent (Tx). If this is the case, the Slave is not responding. Check Modbus Slave 
settings. 
Let’s proceed. 

 
Click Display->communications and observe the traffic between master and slave. Remember 
that it is as seen from the master’s perspective. 

 
Let’s now compare the messages with the ones you obtained with Modbus RTU earlier. 

 

 
 

When we look at the Modbus/TCP messages, as opposed to the Modbus Serial messages, we 
notice the original PDU in there (03 00 00 00 0A), plus several extra bytes in the beginning 
(e.g. 0F 00 00 00 06, as well as the absence of a two-byte checksum at the end. 

 



Notice how the Transaction Identifier increments after every Request/Response pair. 
Run Wireshark by clicking on the shark fin icon. 

 

 
Wireshark will open up. 

 

 
 

Click on Capture->Interfaces, tick the box that corresponds with the Ethernet interface (the one 
showing traffic) and click Start. 

 

 
 

You will see packets being captured. Capture for a few seconds, then hit the square red Stop 
button in the top left-hand side of the screen (just below ‘View’). 

 
Divide the screen into three equally-sized partitions by dragging the horizontal dividing lines up 
or down. 

 



 
 

The next step is to hide the clutter. Type mbtcp in the filter box, and hit Apply. Now you will only 
see MODBUS/TCP Queries and Responses. 

 

 
 

First, observe how the Modbus ADU carried by TCP, IP and Ethernet. 
 

 



 
 

The Modbus/TCP ADU is created by omitting the checksum, and adding the Transaction 
Identifier, Protocol Identifier and Length fields to the original Slave Address (a.k.a Unit 
Identifier). 

 
Let’s have a look at what we have captured. 

 
Select any Query message in the top section of the display. The middle section will show the 
makeup of that particular packet (a.k.a. frame, or message) while the bottom portion of the 
frame will show the actual hex (left) and ASCII (if a byte represents a valid ASCII character) 
on the right. 

 
Click on the [+] next to the Ethernet header, observe the MAC addresses, then collapse it 
again. 

 

 
 

Click on the [+] next to the IP header, observe the IP addresses, then collapse it again. 
 

 
 

Click on the [+] next to the TCP header, observe the port numbers, then collapse it 
again. Note the Well-Known port number (502) on the server (Slave) side vs. the Registered 
port number (>1023) on the client side. 



 

 
 

Now we get to the Modbus ADU. Open up both [+] Modbus/TCP and [+] Modbus. Select the 
Modbus/TCP headline (see below) and notice how the relevant bytes at the bottom of the 
screen are highlighted. 

 

 
 

The Modbus ADU is made up as follows. The first four fields constitute the MBAP, the next 
3 (in this example) constitute the PDU. Note the absence of a checksum as error checking 
is taken care of by the supporting protocols viz. TCP, IP and Ethernet. 

 
MBAP fields: 
• Transaction identifier (2 bytes). This number changes for every request, but is returned 

with each corresponding response. Verify this by looking at the associated Response 
message. In the screenshot above, <01><d4> = 0x0812 = 468 decimal. 

• Protocol identifier (2 bytes). In the screenshot above, <00><00> = 0x0000, since this 
number is 0 for Modbus. 

• Length (2 bytes). This indicates the number of bytes to follow (6 in this case) and will 
obviously differ in the case of a response. In this case it is <00><06> = 0x0006 = 6 
decimal. 

• Unit identifier (1 byte). This is the slave address (1 in our case). <01> = 0x01 = 1 decimal. 
 



PDU fields: 

• Function (1 byte). This is the standard Modbus function (FC03 Read Holding Registers in 
our case). 

• Reference number (2 bytes). This is the protocol address (NOT the physical PLC 
address) of the first (lowest) register. In our case it was set up to be 0. Address 0 
(protocol) = address 40001 (PLC) in this case. 

• Word count (2 bytes). This is the number of registers to be recovered from the slave. In 
this case it is 10 since <00><0a> = 0x000a = 10 decimal. 

 
Select the associated reply in the top window to see the reply. 

 

 
 

End of Optional MODBUS TCP 


