Prove KVL & KCL Laws

1. Measure Voltage drops across all resistors & find i1, i2, i3, i4, currents & prove KVL+ KCL laws.

2. Initially calculate '11' current through Equivalent Circuit.

3. For KVL Law, V1= V2+V3, V1= V2+V4, V1= V1+V5+V6

4. For KCL Law, I1 = I2+I3+I4

<u>Where, I1 can be found from equivalent circuit or voltage drop across V2/R or through</u> practical digital multi- meter of NIELVIS-mx Instrument Launcher. Similarly, find other I2, I3, <u>I4 currents from its voltage drop dividing by its resistor.</u>

1. Open Electromeet and open "NI ELVISmx" as shown in figure.

Now you should able to play with all these real NI ELVISmx electronics applications and if there is confusion then ask with the concerned tutor. This is real practical so whatever you change the values it will directly affects the Oscilloscope signals so think before changing and try to find the voltage drop across each resistor and take the pictures of it to verify that you did it well.

Prove KVL & KCL Laws

hot (î Sen	d Clipbo	bard									
📾 Osci	lloscop	e - NI ELVIS	mx								_	
	IOSAL INFERIOR	-						ø	Basic Settings	Advanced Settings		
LabVIEW				Sample Rate:			Channel 0 Settings			tings		
									AI O	~	AI 1	~
									Enabled Probe	Coupling	Enabled Probe	Coupling
									Scale Volts/Div	Vertical Position (Div)	Scale Volts/Div	Vertical Position (Div)
									\sim		O	
									10 mV 🗸	0 🖨	1 V 🗸	0 🖨
									Timebase	Vertican		
									Time/Div	Type Immedia Source TRIG Horizontal	te 🔽 Position (%)	Slope Level (V) 0 0
сно м	eas:	RMS: 2	LI	reg: 7	Vo-n	: 0.00 V) Tin	neout	1 ms 🖂	2		
					100				Instrument Co Device myDAQ1 (NI	myDAQ)	Acquisition M Run Continue	ode ousty
Cursors Settings Display Measurements				Graph	Controls			Run Stop	Print	Log Help		
Cu	irsors Or	C2 CH 1	~	⊡сн	0 CH1	Pri	Graph operties		Autoscale	-	►	2

7. Oscilloscope Signal where you can see the RMS Voltages of v1, v2, v3, v4, v5, v6.

Final Steps:

- 1. Go NI-ELVISmx and open all the functions like Digital Writer, Digital Multi-Meter, Function Generator and Oscilloscope.
 - 2. Open the Function Generator and create frequency 1 KHz with 10 voltage p-p Sinusoidal Signal as shown in above figure.
- 3. Open the Digital Writer and to see the initial voltage drop signal on 'V1' put the value 0,0,0,1 where you can see the signal in Oscilloscope. Before 0,0,0,1 digital value you cannot see any voltage drop signal in oscilloscope. Similarly find the voltage drop in V2, V3, V4, V5 and V6.
- 4. Similarly, you can observe 'I1' current from digital meter which should be equal to sum of I2, I3, and I4 if you calculate properly.
- 5. At last vary the frequency from 1 KHz to 5 KHz or 10 KHz, similarly vary the input ac voltage and find the different currents and voltages to verify KVL & KCL Laws.

Dig 3	Dig2	Dig1	Dig0	Output Voltage
0	0	0	1	V1
0	0	1	1	V2
0	1	0	1	V3
0	1	1	1	V4
1	0	0	1	V5
1	0	1	1	V6

Prove KVL & KCL Laws

📾 Function Generator - NI ELVISmx — 🗆 🗙	📰 Digital Multimeter - NI ELVISmx	- 🗆 X	Digital Writer - NI ELVISmx — 🗆 🗙
LabVIEW 1.0000 kHz	LabVIEW	8	LabVIEW Numeric Value ×1
Waveform Settings	0.58 m	nA AC	ne ates 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Prequency Amplitude DC Offset Image: Construction of the state of	Measurement Settings V::: V~ Mode Banana Jac Specify Range Banana Jac Range Image 20mA Image Null Offset Image Instrument Control Device Image August (Nill myOAQ) Image	y%FS ↓ ↓ (2000) → (1)) k Connectons ↓ ↓ ↓ (1)) k Connectons ↓ ↓ ↓ (1)) cquisition Mode Run Continuously ↓ un Stop Help ↓ ↓ (2) ↓ ↓ (2) ↓ ↓ (2) ↓ ↓ (2) ↓ ↓ (2) ↓ ↓ ↓ (2) ↓ ↓ ↓ (2) ↓ ↓ ↓ (2) ↓ ↓ ↓ ↓ (2) ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Configuration Settings Lines to Write 0 - 7 Pattern Manual Manual Pattern 1 Lines: 7 6 5 4 3 2 1 0 Lines: 7 6 5 6 4 3 2 1 0 Lines: 7 6 5 6 4 3 2 1 0 Lines: 7 6 6 5 6 4 3 2 1 0 Lines: 7 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
CHO Meas: RMS: 3.530 V Freq: 999.999 Hz VP-P	Sample Rate: 200.00 kS/s	Basic Settings Advanced Settings Channel 0 Settings Source AI 0 Image: Coupling Image: Coupling DC Scale Vertical Volts/Div Position (D) 2 V 0 Timebase Trigge Time/Div Source 500 us Source	ttings ttings Channel 1 Settings Source AI 1 Enabled Probe Coupling IX Couplin

Here, we have done for you one sample that means i1= 0.58 mA and voltage drop signal V1rms= 3.53v and rest i2, i3, i4 and V2, V3, V4, V5 and V6 you have to find where you should prove i1= i2+i3+i4 & V1=V2+V3, V1= V2+V4 and V1= V2+V5+V6. This will ultimately satisfy KVL and KCL laws.

Graph Controls

Graph

Properties

Display Measurements

CH 0 CH1

Cursors Settings

Cursors On

C2 CH 1

Instrument Control

myDAQ1 (NI myDAQ)

Run

Device

Autoscale

Acquisition Mode

Run Continuously

Log

ی 🔁

Print

Stop

 \sim

Help

۲

Thanks