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Model Predictive Control 
TECHNICAL OVERVIEW 

Excerpted from: Wade, H.L., Basic and Advanced Regulatory Control: System Design and 
Application. ISA, 2004.   Used by permission. 

 
INTRODUCTION 
 
Model predictive control (MPC) uses a sampled data form of process model to predicted future 
values of a process variable, based upon past values of controlled inputs (controller outputs). The 
predicted values are compared with future values of the set point to calculate predicted future 
error values, as well as a prediction of future encroachment on constraints. From these 
predictions, a sequence of controller output values is calculated which will minimize some 
function of the predicted error as well as avoid encroaching upon the constraint. Model 
predictive control is usually (but not always) applied to multiple-input, multiple-output 
processes, subject to numerous disturbances and dynamically varying constraints. The 
technology thus encompasses feedback, feedforward, decoupling and constraint control in one 
comprehensive package. 
 
We will present here the essence of MPC, first for a simple single-input, single-output processes, 
both in mathematical terms and in graphical form. Then we will indicate how it can be extended 
to multiple-input, multiple-output applications. Later we will discuss additional issues regarding 
MPC.  This material is excerpted from the referenced cited under the title, where additional 
details may be found: 

 
For greater depth of coverage, see  
 

Camancho, E. F, and C. Bordons, Model Predictive Control. Springer-Verlag, 1999. 
 
Rossier, J. A., Model-Based Predictive Control, A Practical Approach. CRC Press, 2003.  

 
To be consistent with terminology used in the MPC literature, we will use the terms “process 
variable,” “control variable” and “CV” interchangeably. Likewise “process input,” “controller 
output,” “manipulated variable” and “MV” are interchangeable, as are “disturbance variable” 
and “DV.” Auxiliary variables, usually associated with constraints, are termed “AVs.” 
 
SYMBOLS USED  
 
 v column vector of n elements (Size of v is n x 1.) 
 vT row vector. (Superscript T indicates transpose of the vector.) 
 vi ith element of vector v. i = 1,2, …, n. 
 P matrix of n rows and m columns (Size of P is n x m.) 
 PT transpose of matrix P. (Size of PT is m x n.) 
 Pij element of matrix P, in the ith row, jth column 
 x actual value of a controlled variable 

    x̂  predicted value of a controlled variable 
 CV controlled variables 



Model Predictive Control 2 Technical Overview  

 MV manipulated variables 
 DV disturbance variables 
 AV auxiliary variables 
 K control horizon (number of future samples to calculate control moves) 
 N prediction horizon (number of future samples to predict values of CV) 
 λ time constant for reference trajectory 
 
 For multiple input, multiple output processes: 
  R number of CVs 
  S number of MVs 
  T number of DVs 
 
UNCONSTRAINED MPC FOR SISO PROCESSES 
 
Process Model 
 
Model predictive control begins by maintaining a sampled data step response model of the 
process. Compare this with the first-order-lag plus dead-time (FOPDT) step response model 
frequently used for feedforward and decoupling control.  To obtain a FOPDT model, a step 
change is made to the process input, the response is observed then approximated with three 
parameters, representing process gain, dead time, and time constant. With MPC, all of the 
sampled data collected as a result of the step testing is retained in a series of memory locations; 
this data is called a “vector.” For example, in Figure 1, the sequence of values (pl, p2, --- ,pN), 
resulting from a step input change of one unit would be retained as the step response model; this 
data vector is called p in equation 1. 
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Note that this technique is as valid for irregular responses shown in Figure 2 as is it for the well 
behaved process shown in Figure 1. Also note that for a self-regulating process, the response 
reaches an equilibrium where there is no further change in the sampled values. Hence, only a 
finite number of samples need to be retained. With commercial packages, N can be as small as 
30 or as large as 120. 
 
Note also that if the step input change is something other than one unit, the data should be 
normalized so that it represents the response that would result from a one unit input change. 
 
Finally, note that what we have called “process input” may in fact be a set point change to a 
lower level controller, such as a flow controller. In this case, we would be considering the flow 
loop merely as a part of the process. 
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Figure 1  
 Step Response Model 

 

 
 

Figure 2  
 Step Response Model for Irregular Processes 
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While the procedure described above is valid in concept, in actual practice a more elaborate 
procedure may be employed for obtaining the step response model. For instance, the data may be 
prefiltered, there may be a series of alternate direction steps of varying lengths, etc. Once such 
test procedure is called a pseudo-random binary test sequence. This phase is called the 
“identification” phase, and may be a proprietary procedure for a particular commercial package. 

 
Prediction 
 
For the next step in our exposition, let us assume that during some sample and control period, we 
know the current value of the CV; call this x0. Furthermore, assume that we also have a sequence 
of values, ( ), , ,ˆ ˆ ˆ, , ,1 0 2 0 N 0x x x , or collectively as vector ˆ 0x . This represents our current 
prediction of what the CV will be for the next N sample periods, based upon prior values of the 
process input, and also with the assumptions that there will be no further changes in process 
input nor disturbances to the process. The maximum index, N, is the number of sample values in 
our step response model. This is called the “prediction horizon.” 

 

 
Figure 3 

Predicted Profile, Based Only On Prior Control Moves 
 
Suppose also that we know the next K controller output moves (changes in the MV) we intend to 
make. (Go along with us on this; don’t worry about how we happen to know. Later on, we will 
see how these moves are determined. For now, just “suppose we know ….”) Call this sequence 
of moves ( ), , , −Δ Δ Δ0 1 K 1m m m , or collectively as vector mΔ . K is called the “control 
horizon;” K is much less than N, perhaps 1/3 of N. 
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Figure 4 

Modification of Predicted Profile by Current and Future Controller Moves 
 
Each control move that is made will change our prediction of the future profile of the control 
variable. This is depicted by Figure 4, and shown by equation 2. By the principle of 
superposition, the change to the predicted profile will be the magnitude of the control move 
times the step response vector. (Recall that the step response vector is the step response to a 
process input change of 1 unit.) For the control horizon, the predicted values of CV are given by: 
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Equation 2 can be written in expanded vector-matrix notation, as shown in equation 3, or in 
compact vector-matrix notation as shown by equation 41.  

                                                 
1 Readers unfamiliar with vector-matrix notations can consult any number of textbooks on this subject. 
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 ˆ ˆ + ΔK 0x = x P m  (4) 

 
Calculation of Control Moves 
 
We will now address the question of determining the current and future control moves. We 
assumed previously that we knew the control moves, hence we could correct the predicted 
profile of the control variable. If this were true, and if we knew the set point during the 
prediction horizon, as shown in Figure 5, then we could also predict the error values after K 
control moves in the future. Call the sequence of error values ( ), , ,ˆ ˆ ˆ, , ,1 K 2 K N Ke e e , or 

collectively as the vector ˆKe . 
 

 
Figure 5 

Predicted Error Profile 
 

, , ,ˆ ˆi K SP i i Ke x x= −  
 

Hence, 
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where ˆ ˆ= −0 SP 0e x x  
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To calculate the control moves, we will minimize a cost functional, J, which is one-half of the 
sum of squares of the predicted errors.  
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After incorporation equation 5, this becomes: 
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The usual minimization procedure is to set the derivative to zero, hence: 
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Set the right hand side of this equation to zero and solve for Δm: 
 

 
1T Tˆ
−

⎡ ⎤= ⎣ ⎦ 0m P P P eΔ  (9) 

 
The matrix P is tall, slender matrix (size NxK) and cannot be inverted, but T⎡ ⎤

⎣ ⎦P P  is a square 

matrix (KxK), hence, in general, can be inverted. The matrix P is determined initially by the 
process model, equation 1. 
 
Inversion of T⎡ ⎤

⎣ ⎦P P  is not required at each control sample period but only at the time P is 

determined. In fact, the entire matrix manipulation, 
1T T−

⎡ ⎤
⎣ ⎦P P P , can be performed at that time. 

Furthermore, let matrix W be a KxN matrix, defined by 
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Matrix W is comprised of a series of K row vectors, each of N elements: 
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The current control move to be made, ∆m0, is calculated using only the top row, [ ]T1w , of W. 

 [ ]T ˆ0mΔ = 1 0w e  (11) 
 
The other control moves, , , , −Δ Δ Δ1 2 K 1m m m  are not required, since after making the control 
move and correcting the predicted profile, we are going to step forward one sample period and 
repeat the procedure. This further reduces the computation burden at each calculation step. 
 
The astute reader will observe that there are several missing ingredients in the development thus 
far: 
 

Feedback has not been utilized; 
No provisions for controller tuning have been presented; 
Furthermore, there has been no utilization of the knowledge of measurable disturbances. 
 

These omissions will now be corrected. 
 

Incorporation of Feedback 
 
After making the control move calculated by equation 11, the predicted profile must be 
corrected. This corrected profile includes a prediction of the value of the control variable at the 
next sample instant, ˆ1x . Once we have advanced to the next sample instant, that prediction 
becomes the prediction of the value of the control variable at the present time, ˆ0x . The actual 
value of the variable, 0x , and the difference between the actual and predicted values is calculated: 
 
 ˆΔ = −0 0 0x x x  (12) 
 
The entire profile, including the predicted current value, is then shifted by this difference, as 
shown in Figure 6. 

 
  ˆ ˆ1, 2, ,= ← + Δi i 0For i N x x x  (13) 
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where “←” means “replaced by.” Academic research  shows that this step is equivalent to adding 
an integrator into the control loop, thus assuring that the process variable will eventually come to 
set point. 
 

 
Figure 6 

Incorporation of Feedback 
 

Tuning 
 
There are two common techniques for tuning MPC. Some commercial systems use one or the 
other; some use both. These techniques are: 
 

Move suppression 
Reference trajectory 

 
Other design parameters that have an effect on performance, hence could be considered as tuning 
parameters include the sample time, the prediction horizon (N sample periods) and the control 
horizon (K sample periods). 

 
Move Suppression. 
 
With this technique, the cost functional J, given by equation 6, is augmented by the weighted 
sum of squares of the control moves. 
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Equations 15, 16, and 17 are analogous to equations 8, 9 and 10: 
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1T Tˆ
−

⎡ ⎤= ⎣ ⎦ 0m P P + Q P eΔ  (16) 

 
1T T−

⎡ ⎤= ⎣ ⎦W P P + Q P  (17) 

 
Note that equation 11 is still applicable for the calculation of ∆m0. 
 
In practice, the qi weights in equation 14 are usually selected to be the same value, q, thus 
leading to a single tuning parameter for move suppression. A larger value of q will lead to a 
more conservative controller. 

 
Reference Trajectory 

 
A reference trajectory for exponential return to set point from the present value is established by 
the specification of a time constant, λ. Pseudo-set point values are the values of this reference 
trajectory at the future sampling instances, using equation 18. The error vectors used in equation 
6 or 14 are the differences between these pseudo-set point values and the predicted values for the 
PV. This technique provides an additional parameter for tuning; a small value for λ will cause the 
controller to be aggressive; a larger value will result in a more conservative controller. 

 
 ( ) ( )( ), 1 exp /= − − − Δ λSP i SP 0x x x i T  (18) 

 

 
Figure 7  
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Reference Trajectory for Return to Set Point 
 

Incorporation of Feedforward Control 
 

If there is a measurable disturbance, then a unit step response model is determined for the effect 
of this disturbance on the process variable, similar to Figure 1. This disturbance model is 
characterized by a sequence of values, ( ), , ,1 2 Nd d d , or collectively by the vector, d. At the 
beginning of each calculation cycle, the disturbance variable is measured, and the change in the 
disturbance since the last sample instant, ∆u, is determined. Then the predicted profile is 
corrected to account for this change. Equations 19, 20 and 21 are modifications of equations 3, 4 
and 5 to incorporate this feature. The vector ˆ0e  can then be used in equation 9 or 16 to compute 
the control moves. 
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 ˆ ˆ u+ Δ + ΔK 0x = x d P m  (20) 

 
 ˆ ˆ u= − − Δ0 SP 0e x x d  (21) 

 
Summary Diagram 

 
A diagram showing in detail the computations made in one calculation cycle and the effect on 
the memory locations holding the data vector x̂ is shown in Figure 8. This diagram starts with the 
status of x̂ at the end of one calculation cycle, then proceeds to the beginning of the next 
calculation cycle and on through the completion of that cycle. 
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Figure 8. 

Stored Values and Computation During a Typical MPC Sample and Calculation Cycle. 
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UNCONSTRAINED MPC FOR MIMO PROCESSSES 
 

Conceptually, it is a simple matter to scale up from the single-input, single-output process used 
in the previous development to a process with multiple inputs, multiple outputs and multiple 
disturbances, as shown in Figure 9. 
 

 
 

Figure 9  
Multiple-Input, Multiple-Output Process. 

 
In this section, we shall assume that 
 
 R = number of CVs 
 S = number of MVs 
 T = number of DVs 

 
In practice, R may equal S; that is, the process control system may be “square” system. We will 
continue to let K represent the number of sample instances in our control horizon, and N the 
number of sample instances in our prediction horizon. 

 
From each MV to each CV there will be a step response model similar to Figure 1. (Some may 
be null; that is, not every MV will affect all of the CVs.) These models are designated pij, where 
subscript “i” represents “to CV” and subscript “j” represents “from MV”. Hence 
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,1

,2

,N

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

p

ij

ij
ij

ij

p

p

p

 (22) 

 



Model Predictive Control 14 Technical Overview  

and 
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From each DV to each CV there will be a similar step response model (some may be null), 
designated dik, where subscript “i” represents “to CV” and subscript “k” represents “from DV”.  
 

For i = 1,…, R; k = 1,…,T 
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Vectors representing the current values and predicted profiles of the CVs are: 
 

For i = 1,…, R 
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Vectors representing future control moves are 
 

For j = 1 to S 
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Using these definitions, the predicted profile for each of the CVs is given by the following 
equation: 
 

For i = 1 to R 
T S

0
1 1

ˆ ˆi,K i, ik k ij j
k j

u
= =

= + Δ +∑ ∑x x d P mΔ  (27) 

 
Now define the following “super vectors” (vector of vectors) and “super matrix” (matrix of 
matrices). (The size of each vector or matrix is indicated.): 
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Analogous to equations 20 and 21 we have: 
 
 0ˆ ˆ m= + +Kx x D u PΔ Δ  (28) 
 
 ˆ ˆ= − −0 SP 0e x x D uΔ  (29) 
 
After minimizing the sum of squares of the errors, the vector of current and future control moves 
is given by: 
 
 = 0m WeΔ  (30) 
 

where 
1T T−

⎡ ⎤= ⎣ ⎦W P P + Q P  (31) 

 
Note that not every element of ∆m needs to be computed; only the current move for each of the 
MVs is required. Therefore we can compute: 
 
For j = 1 to S T

, ˆj 0mΔ = 0w j e   (32) 
 
where Tw j  is the jth row vector of the matrix W. 
 
CONSTRAINED MPC 
 
In real-world applications, there will be constraints on process variables, manipulated variables 
and auxiliary variables. There may also be constraints on the rate of change of these variables. 
Furthermore, some of the constraints may be hard constraints; others may be soft constraints. 
Hard constraints are established by physical limits. Examples of hard constraints are valves 
which cannot go beyond saturation limits or controllers whose set point cannot be moved outside 



Model Predictive Control 16 Technical Overview  

the measured range. Soft constraints are based process design, equipment limits and safety 
considerations.  As long as there is a feasible solution (i.e., an operating point) that satisfies all 
constraints, then hard and soft constraints can be treated equally. However, there may be no 
feasible solution which satisfies all constraints simultaneously. If these if some of these limits are 
soft constraints, then one strategy is to permit violation of each of the soft constraints by a small 
amount. But rather than leave it up to the process operator to make an ad hoc decision as to how 
much each constraint can be violated, it may be preferable to have a “graceful violation” of each 
limit in a planned fashion (perhaps up to some other hard limit).  
 
First, assume that there is a feasible solution which will satisfy all the constraints. The objective 
will be to minimize the functional J, subject to constraints: 
 

 ( )T T1 ˆ ˆmin 
2

Δm

= e e + m Q mJ Δ Δ  
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 (33) 

 
where ŷ  refers to the predicted value of auxiliary variables and the subscripts “L” and “U” refer 
to lower and upper limits for each class of variable. If there are rate of change limits, these 
should also be included in the constraint set.  
 
A problem of the type described by equation 33 is called a “quadratic programming” (QP) 
problem. There are standard iterative techniques for solving problems of this type; most MPC 
vendors include a QP solver within their software package. 
 
Another abnormal condition is when there are fewer MVs than there are CVs.  There are not 
enough degrees of freedom to control all of the CVs to their set points.  In this case, one possible 
strategy is to assign priority variables (between 0 and 1) to each of the CVs.  Those with a higher 
priority will be controlled closer to their set points. 


