

Instructions

Studio 5000

Instructions for using Rockwell Studio 5000 software

V1.0

Created By:

James T Date: 15/11/2018

Reviewed Date:

Instructions for Studio 5000 software

Software
Rockwell Automation Studio 5000 software is available on Lab 12, via Electromeet,
ensure that you watch the instructional video or read the instructional pdf before
attempting to access the Electromeet labs:
https://lab.electromeet.com/

If TeamViewer requests a password, this is available on your course student
homepage in Moodle.

Look for the following icon on the desktop, or search in programs under ‘Rockwell
Software’:

Studio 5000 Logix Emulate guide:
https://literature.rockwellautomation.com/idc/groups/literature/documents/gr/lgem5k-
gr016_-en-p.pdf

Logix 5000 Controllers General Instructions Reference Manual:
https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-
rm003_-en-p.pdf

Allen Bradley's PLC Programming Handbook:
http://www.plcdev.com/book/export/html/431na

The following guide, ‘Allen Bradley's PLC Programming Handbook’ is sourced from
the above link at plcdev.com, please use the section relevant to your assessment:

Allen Bradley's PLC Programming Handbook

This handbook is a collection of programming overviews, notes, helps, cheat

sheets and whatever that can help you (and me) program an Allen Bradley

PLC.

If you have experience with AB then please contribute.

An Introduction to RSLogix5000 Tags
Tags are the method for assigning and referencing memory locations in Allen

Bradley Logix5000 controllers. No longer are there any physical addresses such as

https://lab.electromeet.com/
https://literature.rockwellautomation.com/idc/groups/literature/documents/gr/lgem5k-gr016_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/gr/lgem5k-gr016_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm003_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm003_-en-p.pdf
http://www.plcdev.com/book/export/html/431na
http://www.plcdev.com/contribute_to_plcdev

N7:0 or F8:7 which use symbols to describe them. These have been replaced with

tags which are a pure text based addressing scheme. This is a departure from the

more conventional ways of programming PLCâ€™s, which includes Allen

Bradleyâ€™s earlier line of PLC5 and SLC 500 controllers.

One of the hardest transitions from the older systems is realizing how the tag

database works. The person with experience in Allen Bradley systems will

recognize many of the instructions and be at home with the editor in RSLogix

5000. Understanding the tag database is the first major hurdle in becoming

comfortable with the ControlLogix and CompactLogix systems. So letâ€™s dig in

and get started.

The Way We Used To Be

Earlier Allen Bradley PLCs programmed with RSLogix 5 and RSLogix 500

software had data files to store I/O and other internal values. These different data

files could only hold one data type. A data type defines the format and the size of

the stored value.

Default Data Files

Data File Descriptions

File # Type Description

O0 Output This file stores the state of output terminals for the

controller.

I1 Input This file stores the state of input terminals for the

controller.

S2 Status This file stores controller operation information

useful for troubleshooting controller and program

operation.

B3 Bit This file stores internal relay logic.

T4 Timer This file stores the timer accumulator and preset

values and status bits.

C5 Counter This file stores the counter accumulator and preset

values and status bits.

R6 Control This file stores the length, pointer position, and

status bits for control instructions such as shift

registers and sequencers.

N7 Integer This file is used to store bit information or numeric

values with a range of -32767 to 32768.

F8 Floating Point This file stores a # with a range of 1.1754944e-38 to

3.40282347e+38.

While this method made it easy for using instructions, it provided a challenge for

logically grouping different data types together according to function. For instance,

in machine control, a motor may have a start, stop, speed and alarm code each with

its own data type. Thus, the data was â€œscatteredâ€• throughout the data files.

File # Name Data Type

I1 Start Input

I1 Stop Input

F8 Speed Setpoint Floating Point

N7 Alarm Code Integer

Comparing the Old and New

The Logix5000 controllers have done away with data files and in its place is the

tag database. The tag database organizes memory locations in one place. Each tag

is assigned its own data type. The table below shows the association between the

current data types and the older systems with data files.

RSLogix 5 / 500 RSLogix 5000

File # Type

O0 Output Input and output modules, when configured,

automatically create their own tags like

Local:0:I.Data.0
I1 Input

S2 Status Use the GSV and SSV instructions to get status

information such as the CPU time, module states

and scan times.

B3 Bit Assign the Boolean (BOOL) data type to the tag.

T4 Timer Assign the TIMER data type to the tag.

C5 Counter Assign the COUNTER data type to the tag.

R6 Control Assign the CONTROL data type to the tag.

N7 Integer Assign the double integer (DINT) data type to the

tag.

F8 Floating

Point
 Assign the REAL data type to the tag.

Creating a Tag

One way to create a new tag is right click on the Controller Tags in the Controller

Organizer and select New Tag. Even faster is the Ctrl+W hot key.

The following dialog box pops up.

The Name given to the tag has the following rules:

 only alphabetic characters (A-Z or a-z), numeric characters (0-9), and
underscores (_)

 must start with an alphabetic character or an underscore
 no more than 40 characters
 no consecutive or trailing underscore characters (_)
 not case sensitive

While tags are not case sensitive, it is good practice to mix cases for readability. It

is much easier to read Line1_Start then LINE1START or line1start.

In addition, the tag database list sorts alphabetically. Therefore, it is best to use

similar starting characters when you want tags to be together in the monitor list.

Tags Named for

Grouping

 Tags Not Named for

Grouping

Level_High High_Level

Level_Low Insert_Nut

Insert_Nut Knife_Stop

Knife_Stop Low_Level

Use the Description field for a longer description of the tag. It is best to keep

names short yet not cryptic. Tag names are downloaded and stored in the controller

but the description is not as it is part of the documentation of the project.

The tag Type defines how the tag operates in the project

Base A tag that actually defines the memory where the data is

stored

Alias A tag that represents another tag

Produced Send data to another controller

Consumed Receive data from another controller

Alias tags mirror the base tag to which they refer. When the base tag value changes

so does the alias tag. Use aliases in the following situations:

 program logic in advance of wiring diagrams
 assign a descriptive name to an I/O device
 provide a more simple name for a complex tag
 use a descriptive name for an element of an array

Produced and consumed tags make it possible to share tags between controllers in

the same rack or over a network. This article does not cover this aspect.

Select a Data Type for the tag by typing it in or by clicking on the ellipsis button

and selecting it from the list. A data type is a definition of the size and layout of

memory allocated for the created tag. Data types define how many bits, bytes, or

words of data a tag will use.

The term Atomic Data Type refers to the most basic data types. They form the

building blocks for all other data types.

Data Type Abbreviation Memory bits Range

Boolean BOOL 1 0-1

Short Integer SINT 8 -128 to 127

Integer INT 16 -32,768 to 32,767

Double Integer DINT 32 -2,147,483,648 to

2,147,483,647

Real Number REAL 32 +/-3.402823E38 to +/-

1.1754944E-38

Logix5000 controllers are true 32-bit controllers, meaning the memory words are

32-bits wide. No matter what, a tag always reserves 32 bits of memory even if it is

a Boolean or integer data type. For this reason, it is best to use a DINT when

dealing with integers. Furthermore, a Logix5000 controller typically compares or

manipulates values as 32-bit values (DINTs or REALs).

A Logix5000 controller lets you divide your application into multiple programs,

each with its own data. The Scope of the tag defines if a tag is global (controller

tags) and therefore available to all programs or local (program tags) to a select

program group. Pay careful attention to this field as creating it in the wrong area

may lead to some confusion later on as to its location.

Controller Tags are available to all programs. You cannot go wrong using

controller scoped tags unless you easily want to copy and paste programs. A tag

must be controller scoped when used in a Message (MSG) instruction, to produce

or consume data and to communicate with a PanelView terminal.

Program Tags are isolated from other programs. Routines cannot access data that is

at the program scope of another program. Having program tags make it easy to

copy/paste programs and not have to worry about conflicting tag names. Make sure

though that no controller tags are named the same as program tags.

Style is the form in which to display the tag by default. The following table

provides you with information on the base and notation used for each style.

Style Base Notation

Binary 2 2#

Decimal 10

Hexadecimal 16 16#

Octal 8 8#

Exponential 0.0000000e+000

Float 0.0

Edit and Monitor Tags

To edit existing tags select the Logic > Edit Tags menu item. A spread sheet like

view lets you create and edit tags.

Clicking the + sign next to a tag reveals its structure. For a DINT tag this is the 32

individual bits that make up the tag which will not be of interest if you are using

the tag as a number rather then individual bits. If you do wish to use the individual

bits then you can address them in this way with the tag name followed by a period

and then the bit position (e.g. MyTag.5). Shown below is the expanded structure

for a TIMER. Notice it is made of two DINTs and three BOOLs. In this case, the

Booleans are packed into one DINT and therefore a timer uses three DINTs of

memory.

An Easier Way to Create Tags

The easiest way to create tags is on the fly while programming. When an

instruction is first used a â€œ?â€• will indicated the need for a tag. There are three

options at this point:

1. Double click on the â€œ?â€• and select an existing tag from the
drop down box.

2. Right click on the â€œ?â€• and select new tag.
3. Double click on the â€œ?â€• and type in the tag name. If it does not

all ready exist, then right click on the tag name and select Create
â€œNewTagNameâ€•. Be careful with this method not to use
spaces or special characters.

The nice thing about all these methods is that RSLogix5000 will automatically fill

in the correct data type according to the instruction used.

Another quick method is to drag and drop an existing tag to a new instruction.

Make sure to click on the tag name rather then the instruction.

Conclusion

These are the basics of tags. The advantages are:

1. Tags, if done right, create a level of documentation that is stored in
the PLC.

2. The software does an automatic housekeeping of memory locations.
Thereâ€™s no more worrying about physical addressing and
memory conflicts.

3. Structures can be more easily put together based on function rather
then data type.

Advance subjects include arrays, user defined data types (UDT) and Add-On

Instructions. Hopefully, you will continue to learn more about the power of tags.

There is no doubt that if you grasp the principles presented here you will be well

on your way to using and troubleshooting any Logix5000 controller.

A Quick Tutorial on RSLogix Emulator 5000
RSLogix Emulator 5000 is a software simulator for the Allen Bradley line of Logix

5000 controllers (ControlLogix®, CompactLogix®, FlexLogix®, SoftLogix5800®

and DriveLogix®). The goal is to mimic the function of a PLC without the actual

hardware and thus do advanced debugging. More information can be found in the

AB publication LGEM5K-GR015A-EN-P.

As a quick introduction we’ll go through a simple example of setting up a

simulation. This involves three major steps.

1. Setting up the chassis monitor.
2. Creating a connection in RSLinx.
3. Creating a project with associated emulation hardware.

Setting up the Chassis Monitor

To start the Chassis Monitor, click Start > Programs > Rockwell Software >

RSLogixEmulate 5000 > RSLogix Emulate 5000 Chassis Monitor.

http://www.plcdev.com/glossary/1?Array
http://www.plcdev.com/glossary/1?Array

When the emulator opens up you’re confronted with what looks like an
empty chassis. In slot 0 is an RSLinx module which has to be there for the
emulator communications to work. Your slot 1 might have another
irremovable RSLinx module depending if you are running RSLogix
Enterprise.

From here we set up our hardware configuration for simulation. Our first step will

be to add the CPU. In this case it is a special one called an Emulation Controller.

1. Click Slot > Create Module.
2. Choose the Emulator RSLogix Emulate 5000 Controller.
3. Chose slot 2 for the controller

http://www.plcdev.com/glossary/1?Array

4. Click OK to add it to the chassis monitor.

5. At this point you may be accosted with a message about previous

configurations. Just select Reset the Configuration to Default
Values and click NEXT.

6. The next two dialog screens are for setting up the controller
details. Click NEXT and FINISH to accept all the defaults.

Next we’ll add some input/output simulation.

1. Click Slot > Create Module.
2. Choose the 1789-SIM 32 Point Input/Output Simulator.
3. Chose slot 3 for the simulator and click OK.

4. Accept the defaults for the setup by clicking NEXT and FINISH.

The chassis monitor will now have two emulation modules in it ready to go.

Creating a connection in RSLinx

1. Start RSLinx under Start > Programs > Rockwell Software >
RSLinx > RSLinx Classic

2. Click Communications > Configure Drivers.
3. Select the Virtual Backplane (SoftLogix 58xx) driver from

the Available Driver Types list.
4. Click Add New. The Add New RSLinx Driver dialog box appears.

Click OK.
5. The new driver appears in the Configured Drivers list. Click Close.

Using RSLogix Emulator in a Project

To use the emulator in a project you must setup the hardware correctly.

1. Start the RSLogix 5000 software and create a new project.
2. Under the New Controller window type select an Emulator –

RSLogix Emulator 5000 Controller. Give it a name and assign it to
the same slot as the one you put in the Chassis Monitor which in our
example is slot 2. Click OK.

3. In RSLogix 5000's Controller Organizer, right click on the I/O
Configuration folder, and then click New Module. The software
displays the Select Module window.

4. Open the Other folder. Select the 1756-MODULE from the modules
list and then click OK.

5. The software displays the New Module window.
a. Add a Name for the card.
b. In the Slot field put the number that corresponds with the Chassis
Monitor.
c. For the Connection Parameters put in the following and
click OK

Assembly
Instance

Size

Input 1 2

Output 2 1

Configuration 16 0

6.

7.
8. On the next Module Properties screen make sure to change

the Requested Packet Interval to 50.0 ms.

Ready, Set, Go

You are now ready to use the emulator just like you would any other
PLC. Open Who Active and set the path to the RSLogix 5000 Emulator.

The inputs can be simulated in the emulator’s Chassis Monitor by right
clicking on the module and selecting Properties. Under the I/O Data tab is
the ability to toggle each of the inputs on or off.

Note:
RSLogix Emulator is sometimes erroneously called RSEmulator.

Getting Started with the Logix5000 PIDE Function Block
The PIDE (Enhanced PID) is an Allen Bradley Logix5000 family (ControlLogix,

CompactLogix, FlexLogix, SoftLogix) function block that improves on the

standard PID found in all their controllers.Â First impressions of this function

block are quite intimidating.Â If you try to dive into it head first you may just end

up banging your head against a wall.Â Many will be quite happy to stick with the

tried and true PID instruction but to compete with the more advanced process

control applications the PIDE boasts the following.

 It uses the velocity form of the PID algorithm.Â This is especially
useful for adaptive gains or multiloop selection.

 Control of the instruction can be switched between Program and
Operator modes.

 Better support for cascading and ratio control.
 Built in autotuner (requires extra key)
 Support for different timing modes
 More limiting and fault handling selections.

Still interested?Â What we want to do here is basically get you off the ground

with the PIDE, distill all the options to the essentials and get it working.

The PIDE is only available as a function block (sorry, no ladder).Â Like the PID

instruction it is best to set it up in its own periodic task.Â The period of the task

automatically becomes the sample rate (DeltaT) of the PID loop.Â Just make sure

when adding the new routine to the task to select the Type as "Function Block

Diagram."Â

Adding the PIDE Function Block

The PIDE instruction can be added from the Instruction Toolbar under

the Process tab.

Once you plop a function block onto a sheet it automatically creates a program tag

for the instruction which stores all the settings.Â The parameters can be set or

monitored by wiring input and output references or by clicking on the ellipsis box

in the top right corner to reveal the block properties.Â

Opening the block properties for the PIDE instruction before RSLogix5000 version

15 meant you would be accosted with a long list of parameters.

Version 15 has at least organized some of the more common settings (but not all)

under tabs and groups.

Â

The most essential settings are:

Name V15 Location Description

.PV Must be wired in from

a tag.

The Process Variable is the reading (temperature,

pressure, flow, etc.) that is to be controlled by the PID

loop.

.PVEUMax

.PVEUMin

EUs/Limit tab in the

Engineering Units

Scaling group

The Process Variable Engineering Units Maximum

and Minimum.Â The value of PV and SP which

corresponds to 100 % span of the process variable.

.SPProg

.SPOper

Should be wired in or

set in the tag.

The Set Point is the theoretical perfect value of the

process variable.Â SPProg is the value to use when in

program mode and SPOper is used when in operator

mode.

.SPHLimit

.SPLLimit

EUs/Limit tab in the

SP Limits group

The Set Point High Limit and Set Point Low Limit

clamp the maximum and minimum values of the set

point.Â If SPHLimit > PVEUMax or SPLLimit <

PVEUMin then a fault will occur.

Name V15 Location Description

.PGain General

Configuration tab in

the Gains group

Proportional gain.Â Enter 0 to disable.

.IGain General

Configuration tab in

the Gains group

Integral gain.Â Enter 0 to disable.

.DGain General

Configuration tab in

the Gains group

Derivative gain.Â Enter 0 to disable.

Program/Operator Control

The first thing to understand when programming a PIDE block is the different

controls and modes available.Â

The Program/Operator control lets you transfer control of the PID loop between

the user program and an operator interface such as an HMI.Â Each control has

separate set points and mode controls.Â It's important to understand that when in

Program Control the set point is determined by SPProg while in Operator Control

its SPOper.Â The SP output indicates the set point that the function block is

actually using.

Control is determined by the following inputs:

Name Description

.ProgProgReq A program request to go to Program control.

.ProgOperReq A program request to go to Operator control.

.OperProgReq An operator request to go to Program control.

.OperOperReq An operator request to go to Operator control.

The ProgOper output indicates the control of the PIDE instruction.Â If the output

is a 1 then it is in Program control and if the output is a 0 then it is in Operator

control.Â The Program request inputs take precedence over the Operator requests

so that the program can lock out any operator overrides.Â The ProgValueReset

input clears all input requests.

Operating Modes

The PIDE instruction supports the following modes.

Mode Description

Manual While in Manual mode the instruction does not compute the change in

CV.Â The value of CV is determined by the control. If in Program control,

CV = CVProg and if in Operator control, CV = CVOper.Â Select Manual

mode using either OperManualReq or ProgManualReq.Â The Manual

output bit is set when in Manual mode.

Auto While in Auto mode the instruction regulates CV to maintain PV at the SP

value.Â If in program control, SP = SPProg and if in Operator control, SP =

SPOper.Â Select Auto mode using either OperAutoReq or ProgAutoReq.

The Auto output bit is set when in Auto mode.

Cascade/Ratio While in Cascade/Ratio mode the instruction computes the change in

CV.Â The instruction regulates CV to maintain PV at either the SPCascade

value or the SPCascade value multiplied by the Ratio value.Â SPCascade

comes from either the CVEU of a primary PID loop for cascade control or

from the "uncontrolled" flow of a ratio-controlled loop.Â Select

Cascade/Ratio mode using either OperCasRatReq or ProgCasRatReq.Â The

CasRat output bit is set when in Cascade/Ratio mode.

Override While in Override mode the instruction does not compute the change in

CV.Â CV = CVOverride, regardless of the control mode.Â Override mode

is typically used to set a "safe state" for the PID loop.Â Select Override

mode using ProgOverrideReq.Â The Override output bit is set when in

Override mode.

Hand While in Hand mode the PID algorithm does not compute the change in

CV.Â CV = HandFB, regardless of the control mode. Hand mode is

typically used to indicate that control of the final control element was taken

over by a field hand/auto station.Â Select Hand mode using

ProgHandReq.Â The Hand output bit is set when in Hand mode.

If a fault occurs in the PIDE settings then it is forced into Manual mode and sets a

corresponding bit in the Status words.Â The InstructFault output is the indicator of

a fault.Â For more detail open the block properties and look at the Status at the

bottom of the dialog box.Â Refer to the Logix5000 Controllers Process Control

and Drives Instructions (pub 1756-RM006D-EN-P) for details.

Basic Example

Here's an example where just the essentials are used.Â This is a temperature

control application if you hadn't guessed all ready.Â I've changed the look of the

function block by going into the block properties, selecting the Parameters tab and

checking on (or off) the boxes in the Vis column besides the inputs and outputs that

are of concern.

Here's the run down on each of the inputs.

Input Description

PV The process variable coming in from my TC card

PVEUMax

PVEUMin

The span of the temperature input that equals 0 to 100%.Â In this case

the temp goes from 0 to 1200 degC.

SPHLimit

SPLLimit

We could limit the set point but in this test case just set it equal to the

PVEUMax/Min.

SPProg I've decided to use Program Control so the Set Point needs to come in on

this input rather then SPOper.

CVProg When in manual mode the CV is controlled by this input.

DependIndepend I prefer the Dependent form of the PID algorithm.

PGain

IGain

Dgain

The essential PID settings of Proportion, Integral and Derivative.

ProgProgReq Set the request to use Program Control.

Input Description

ProgAutoReq

ProgManReq

Since we're in Program Control these inputs control the Auto and Manual

modes.Â To run them off one switch the BNOT block is used to invert

the bit.

Now for the outputs.

Output DescriptionÂ

CVEU The Control Variable output in engineering units.Â Every PID control needs

an output.Â In this case it goes from 0 to 100%.

SP The actual set point which in this case equals SPProg.

ProgOper I want to see a 1 here just to make sure we're in Program Control

Auto

Manual

Indicates the operating mode.

InstructFault If I screw something up then this bit will come on.

Common Problems

No output  The PID loop is in manual mode.Â Put it into auto mode
using ProgAutoReq.

 Not in program control or SPProg is not set.Â Use
ProgProgReq to go into program control and set SPProg.

 No values or not enough proportion (PGain) or integral
(IGain).

Output is

limited at 100

 The SP High Limit is still set at the default of 100.Â Change
the value of SPHLimit.

Conclusion

Hopefully this basic introduction has gotten you off the ground.Â Half the battle is

just getting it to work.Â Once that is done you can now really start to tinker with

the power of the PIDE function block.

Further Reference

 Logix5000 Controllers Process Control and Drives
Instructions (Publication 1756-RM006D-EN-P)

 Using the PIDE Instruction (Publication LOGIX-WP008A-EN-PÂ -
August 2005)

 Using a Logix Controller for Barrel Temperature Control on Plastic
Injection Molding and Extruding Machines (Publication RA-AP015A-
EN-P â‚¬â€œ February, 2004)

Install and Test a MVI46-MCM Modbus Module for SLC-500
by Nugroho Budi from controlmanuals.com

The MVI46-MCM is a Modbus communication module provided by ProSoft

Technology. The module can be installed in a SLC500 rack so it can communicate

to other Modbus devices.

This article assumes you have an Allen Bradley SLC 5/03, 5/04, or 5/05 processor

with a power supply of adequate capacity for the MVI46-MCM plus any

Input/Output (I/O) modules you intend to use.Â For the purposes of this lab, and

to match the supplied sample ladder, we will assume a configuration as follows:

 A-B 1747-L551 5/05Processor â€“ 16K Memory, OS500
 A-B 1746-A7 7-Slot Chassis (rack)
 A-B 1746-P1/P7 Power Supply

If different hardware is used, modifications to the sample ladder file,

MVI46MCM.RSS will need to be made to obtain a properly functioning program.

Installing the Module

1. Before installing the MVI46-MCM into the SLC chassis, check the
position of the Interface Configuration Jumpers on the bottom of the
module.

http://controlmanuals.com/
http://www.prosoft-technology.com/content/view/full/135
http://www.prosoft-technology.com/
http://www.prosoft-technology.com/

The Setup Jumper is only necessary when used to flash a firmware
upgrade onto the module.Â For normal configuration and operation,
this jumper must be positioned as shown in the diagram above.Â We
will be using the RS-232 interface, so check that the PRT2 and PRT3
jumpers are positioned as shown above so the module will
communicate in RS-232 mode.

2. NOTE:Â For this step, and at any time when you are installing or
removing hardware to or from the chassis, you MUST do so with the
POWER OFF!Â SLC modules are NOT HOT
SWAPABLE.Â Attempting to insert or remove modules while the
chassis is powered-up can result in damage to the module, the
processor, the Power Supply, and/or the Chassis itself!

Chassis slots are numbered sequentially, left to right, starting at zero
for the leftmost slot.Â The processor always goes in Slot 0.Â Install
the MVI46-MCMÂ module into the slot next to the processor.Â This
will place the module in Slot 1.Â The rest of the chassis slots should
be left empty, for now.Â If done correctly, your installation should
look similar to the following illustration:

3. Set the processor key switch to the REM position and power up the

chassis.

After its boot cycle, the processor will be ready to accept
programming.Â At this point, you may ignore any RED LEDs
indicating processor or module faults.Â Until a valid project
(program) is loaded into the processor it may show a fault.

Configure RSLinx to Talk to SLC

1. Attach a null modem cable (or the A-B CP3 programming cable) from
your PC serial port to the serial port on your SLC processor, called
Channel 0.

2. Open RSLinx.Â Click on the â€œCommunicationsâ€• drop-down
menu.Â Click on the â€œConfigure Driversâ€• option.Â If
youâ€™re running a newer version of RSLinx, youâ€™ll see a dialog
box like this one:

http://en.wikipedia.org/wiki/Null_modem

If you already have a RS-232 DF-1 driver configured, skip to the Auto
Configure instructions in Step 5.

3. Click the down arrow in the â€œAvailable Driver Types:â€• option
box and click on â€œRS-232 DF-1 devicesâ€•, as shown, and click
the â€œAdd Newâ€¦â€• button.

4. You will now be prompted to name your driver.Â For most cases, the

default name will be acceptable.Â To match the sample project used

in this lab, accept the default name by clicking the â€œOKâ€•
button.

5. Next, you will see the driver setup dialog box.

a. First, click the down arrow in the â€œComm Port:â€• option
box and click the Comm port that matches the number on your
PC (usually Comm1, Comm2, Comm3, or Comm4).Â

b. Then, click the down arrow in the â€œDevices:â€• option box
and click the â€œSLC-CH0/Micro/PanelViewâ€• option.Â

c. Finally, click the â€œAuto Configureâ€• button.Â RSLinx will
then query the processor, establish a communications link, and
adjust the driverâ€™s parameters to match the
processorâ€™s current port configuration.Â Donâ€™t worry if
the parameters in your driver donâ€™t match the ones shown
in the following example.Â As long as the window reports
â€œAuto Configuration Successful!â€•, whatever parameters
appear for baud rate, parity, error checking, etc. will be
correct.Â A successful result will look something like this:

In some instances, RSLinx will fail to Auto Configure.Â If this
happens to you, first check that your cable is OK, properly
connected, and that you are selecting the correct Comm
port.Â Once this is verified, if Auto Configure fails, you will
need to completely wipe the processor memory and reset it to
factory defaults.Â Consult the A-B product documentation, the
A-B website, or A-B Tech Support for instruction on how to do
this.Â Once done, the RSLinx should be able to Auto
Configure.

Clicking on â€œOKâ€• will return you to this dialog:
Â

If the driver status is â€œRunningâ€•,Â you have now
successfully configured RSLinx to talk to the processor.Â Click
the â€œCloseâ€• button to close this dialog and then exit
but do notshutdown RSLinx by clicking the â€œFileâ€• menu
option and then â€œExit and Shutdownâ€•. Be sure to click
the â€œExitâ€• option.

Use RSLogix500 to Modify the Sample Project

1. Next, we will load and configure the sample ladder logic program and
download it to the processor.Â Start RSLogix500.Â It should come
up to a blank window, like this:

2. Click on the â€œFileâ€• drop-down menu, click â€œOpenâ€• and

browse to the folder where you saved the sample ladder and double-
click the file, â€œMVI46MCM.RSSâ€• that is included on the
MVI46MCM CD.

This will open the sample project.Â We can now configure the
sample ladder to get it ready for the next exercise.

3. Youâ€™ll get a window that looks like this.Â If not, then click on the
â€œViewâ€• Menu, and make sure there are check marks beside
â€œStandardâ€�, â€œOnlineâ€�, and â€œTabbed Instruction
Barâ€• options.

4. In the left pane Project Tree area, under the Controller folder, double-

click on the â€œIO Configurationâ€• icon.Â This will display the I/O
Configuration dialog box:

5. Click on â€œOTHERâ€� in Slot 1, as shown, then click the â€œAdv

Configâ€• button.

Make sure the values are as shown.Â If they are not, set them to
these values.Â Otherwise, the module will not function
properly.Â Details on module setup are contained in the Userâ€™s
Manual in Section 3.3 â€œSetting Up the Moduleâ€•.Â After you
verify the values, click â€œOKâ€� or â€œCancelâ€• to close this
dialog box.Â Click on the Exit icon () in the upper-right corner of
the I/O Configuration dialog to close it and return to the main window.

6. In the left pane Project Tree area, under the Data Files folder,
double-click on the N10 â€“ MCM CFG icon.Â Set the values in this
file to match the ones shown below.

MCM Ports 1 & 2 Cmds

Port 1 / Port 2

- N10:10 / N10:40Â Port Enable/Disable

- N10:11 / N10:41Â Port Type

- N10:12 / N10:42Â Float Flag

- N10:13 / N10:43Â Float Start

- N10:14 / N10:44Â Float Offset

- N10:15 / N10:45Â Protocol

- N10:16 / N10:46Â Baud Rate

- N10:17 / N10:47Â Parity

- N10:18 / N10:48Â Data Bits

- N10:19 / N10:49Â Stop Bits

- N10:20 / N10:50Â RTS On Delay

- N10:21 / N10:51Â RTS Off Delay

- N10:22 / N10:52Â Min. Response Delay

- N10:23 / N10:53Â Use CTS Line

- N10:24 / N10:54Â Slave ID

- N10:25 / N10:55Â Bit Input Offset

- N10:26 / N10:56Â Word Input Offset

- N10:27 / N10:57Â Output Offset

- N10:28 / N10:58Â Holding Register Offset

- N10:29 / N10:59Â Command Count

- N10:30 / N10:60Â Min. Command Delay

- N10:31 / N10:61Â Command Error Pointer

- N10:32 / N10:62Â Response Timeout

- N10:33 / N10:63Â Retry Count

- N10:34 / N10:64Â Error Delay Count

- N10:35 / N10:65Â Reserved

- N10:36 / N10:66Â Guard Band

- N10:37 / N10:67Â Guard Band Timeout

7.

This configuration data will set module Port1 to be a Modbus Master and

Port2 to be a Modbus Slave.Â Both ports will be set for Modbus RTU

mode, 57,600-baud, no parity, 8 data bits, 1 stop bit.Â Hardware

handshaking will be disabled (RTS/CTS not used.)Â We will be able to use

up to 5 Modbus Commands and any Modbus Command Errors will be sent

to module memory beginning at register address 300, which will then appear

in SLC data table N31, beginning at N31:100.Â With this configuration, we

can use a second null modem

cable and two DB9M-to-RJ45 pigtails to connect the two ports together,

which in turn will allow us to send and get data from the module with our

sample ladder.Â Click on the Exit icon () in the upper-right corner of the

Data File N10(dec) dialog to close it and return to the main window.

8. We will now configure our Modbus commands for Port1.Â In the left
pane Project Tree area, under the Data Files folder, double-click on
the N11 â€“ P1 CMDS icon.Â Set the values in this file to match the
ones shown below.

MCM Ports 1 & 2 Cmds

Port 1 / Port 2

- N11:0 / N12:0Â Cmd Enable

- N11:1 / N12:1Â Internal Address

- N11:2 / N12:2Â Poll Interval Time

- N11:3 / N12:3Â Count

- N11:4 / N12:4Â Swap Code

- N11:5 / N12:5Â Node Address Device ID

- N11:6 / N12:6Â Function Code

- N11:7 / N12:7Â Device Address Register

9.

This creates one Modbus command for Port1, our Master port.Â This

command will send a request out Port1 to the Modbus Slave at Slave ID 2

(our Port2), as configured in N10.Â The command will get twenty 16-bit

words (registers) of data from Destination Address 0, our module address 0,

the first word of our WRITE DATA area, and move it out Port2, in Port1,

and store it in Internal Address 200, our module address 200, the first word

of our READ DATA area.Â This command will execute once each second.

Â This way, any values we poke into data table addresses N32:0 through

N32:19 will, after a short delay, appear in the corresponding addresses in

data table N31.Â Click on the Exit icon () in the upper-right corner of the

Data File N11 (dec) dialog to close it and return to the main window.

10. In the left pane Project Tree area, under the Data Files folder,
double-click on the N12 â€“ P2 CMDS icon.Â Set all the values in
this file to zero and click on the Exit icon () in the upper-right
corner to close this window and return.

11. In the left pane Project Tree area, under the Data Files folder,
double-click on the N32 â€“ WRITE DATA icon.Â Set the values in
this file as shown.

This will give us some beginning data values for the Modbus
command we just created.Â Click on the Exit icon () it the upper-
right corner to close this window and return.

12. In the left pane Project Tree area, under the Data Files folder,
double-click on the N31 â€“ READ DATA icon.Â Set the values in this
file to zero so that we will know that any values that appear there are
the result of our ladder logic execution.Â Click on the Exit icon ()
in the upper-right corner to close this window and return.

13. We are now ready to save our new project before
downloading.Â In the main window, click on â€œFileâ€•, then
â€œSave Asâ€• to get the Save As dialog box.Â In the File Name:
box, type â€œ46Test1â€•, as shown, and click the Save button.

Congratulations!Â You now have a functioning program that will move data to

and from the module.

Downloading and Testing the Modified Sample Project

1. Make sure your null modem cable (or CP3 programming cable) is still
attached between your PC Comm port and the processor RS-232
port.Â Take the two DB9M-to-RJ45 pigtails and the other null
modem cable and connect the lower two ports on the MVI46MCM
module,
P2 APPLICATION and P3 APPLICATION, with these cables.

2. Set the processor key switch to the â€œPROGâ€• position.Â In
RSLogix500, click the down-arrow next to the â€œOFFLINEâ€•
status and click â€œDownloadâ€¦â€• from the menu.

When you see the confirmation dialog, click the â€œYesâ€• button.

The sample ladder is currently configured for a 1747-L551 SLC
5/05.Â If you are using a different processor, when you try to
download, you will see the following:

If you get this warning screen, click the â€œOKâ€•
button.Â RSLogix will automatically determine the actual processor
type you are using and adjust the IO Configuration to match your
installed processor.Â You should then see the following window:

When it comes up, make sure the â€œClear I/Oâ€• box is NOT
checked, as shown, and click â€œOKâ€•.Â A Download Progress
dialog will flash through several progress bars as various parts of the
program are loaded.Â Eventually, you should see:

Click the â€œYesâ€• button.Â The RSLogix status box will change
to show you are on-line live with the processor.Â You can also tell
you are on-line when you see the colored blocks and ladder rotating
in the status box.Â The faster they rotate, the higher your connection
speed.Â It should look like this (with animated ladder):

If you had to change your processor type, now would be a good time
to re-save the program.

3. Next, we will change the SLC 500 processor key switch from
â€œPROGâ€� to â€œRUNâ€� and back to the â€œREMâ€•
position.Â If you have a good program, the processor RUN LED will
light up solid green and, on the MVI46MCM module, the OK LED will
change from red to green, the APP STATUS and BP ACT LEDs will

be amber and the LEDs for P2 and P3 will flash green about once
every second.Â The RSLogix status box should look like this:

If, however, the processor â€œFAULTâ€• LED flashes red and you
see this,

it indicates some kind of hardware or software problem.Â Common
causes include: hardware failure, ladder logic errors, and installing
the MVI46MCM module in a different chassis slot than the one
selected in the I/O Configuration, I/O modules in the configuration
that are not actually installed in the chassis, and more.Â Assuming
you are still on-line with the processor, to see what might be causing
the problem, you can check the â€œProcessor Statusâ€• dialog for
the Major Error Code causing the fault.Â In the Project Tree, under
the
â€œControllerâ€� folder, click on â€œProcessor Statusâ€� then
click on the â€œErrorsâ€• tab to see the fault.Â An example of
having the module in the wrong slot is shown.Â Your error may be
different.

Do whatever is required to fix the root cause of the fault and then turn
the key switch from â€œREMâ€� to â€œPROGâ€� to â€œRUNâ€•
and back to â€œREMâ€• to get the processor running normally.

4. NOWâ€¦Weâ€™re ready for some real fun.Â Take a few minutes to
look at the three LAD files in our test program.Â For a detailed
explanation of what these files do, look at Chapter 4 â€“ Ladder Logic
in the Userâ€™s Manual, beginning on page 25.

Now, look in LAD 4 â€“MCM CMDS at rungs 0002 and 0003.Â Bit
B3:0/0 in rung 0002 is called the Cold Boot bit.Â Bit B3:0/1 in rung
0003 is called the Warm Boot bit.Â Either may be toggled to force
the module to restart, reload its configuration and any Modbus
commands.Â This is a handy feature that makes it easy to change
and test different configurations and commands.Â Itâ€™s quicker
and safer to toggle these bits than to recycle the processor or power-
down and power-up the chassis to accomplish the same
thing.Â Toggling either of these bits allows configuration and
command changes to be performed without halting the
processor.Â This can be very useful when added one of our modules
to an existing application already in use at a customer site.Â As we
progress through the rest of this exercise, we will be returning to this
ladder and these rungs often as we modify and test our program.

Toggle one of these bits now and watch the LEDs on the front of the
module as you do so.Â You should see the P2 and P3 LEDs stop
the regular blinking they had been doing, the OK LED will briefly turn
red then go back to green, and then the P2 and P3 LEDs should
resume their blinking once a second.

To toggle the bit, right-click on its picture then click on â€œToggle
Bitâ€• at the bottom of the context menu, as shown.Â Be sure to
watch the face of the MVI46-MCM module as you click.

5. Now we can check to be sure our program is moving the data as it

should.Â Remember previously that we zeroed out our READ DATA
table and put test values in our WRITE DATA table.Â If our program
is working correctly, we should now have the same values in the
same relative addresses in our READ DATA as in the WRITE
DATA.Â First, letâ€™s check the WRITE DATA table to be sure our
test values are still there.Â In the Project Tree, under the Data Files
folder, double-click â€œN32 â€“ WRITE DATAâ€•.

Yep!Â Our test data is still there, just the way we left it.Â Now, for
the moment of truthâ€¦does our N31 â€“ READ DATA table look the
same?

6. Double-click on â€œN31 â€“ READ DATAâ€� and letâ€™s see.Â If
your tables overlap each other, you can click-and-hold on the blue
Title Bar of either one, drag it to a different position in the window,
and release.Â Ready, GO!

YES!!!!!Â They MATCH!Â Now, that was easy, wasnâ€™t it?Â You
can experiment further with the above by changing the values in Data
File 32, N32:0 through N32:19.Â With the PLC in Run Mode the

values in Date File 31, N31:0 through N31:19 should, after a very
short delay match those in Data File 32.

Using ModScan to simulate the Modbus Master

1. Using Windows File Explorer, go to the CD and expand the yellow
folder in the left side tree pane titled Utilities under the InRAx folder
until you see a folder titled Modscan.

2. Double-click on the compressed folder in the right side Explorer pane

to extract its contents.Â Choose or create a new folder to contain
these files.Â A suggestion would be to create a new folder titled
Modscan, and then extract the compressed files into this new folder.

3. After extracting the Modscan files, locate and double-click on the file
titled Modscan.exe.Â You should see the following program appear.

4. This is the Windows program called Modscan.Â This is a shareware

program and can be used for 30 days, after which you are asked to
purchase it.

5. To use the program, click either Cancel or OK to close out the
â€œRegistration Informationâ€• dialog window. You may have to
click once inside the window, and then click OK. Repeat if necessary.
Now we are ready to use the program.

6. Remove the short RJ45 pigtail cable from Port 1 on the MVI46-MCM
and then disconnect it from the RS232 Null Modem cable.Â Now
connect the RS232 Null Modem cable directly to the COM 1 port on
your computer.Â If you currently have another cable connected to
your computerâ€™s COM 1 port for interfacing to the SLC-500, first
go offline with RSLogix 500 software, then disconnect that cable and
connect the RS232 Null Modem cable that was previously connected
to Port 1 of the MVI46-MCM module.Â We should now have COM1
on our PC connected with a RS232 Null Modem cable directly to Port
2 on our MVI46-MCM module which is configured as a Modbus Slave
device.

7. In the Modscan program, click on the menu choice called
â€œSetupâ€•, and then click on Serial.Â Configure the settings as
shown below. Click OK when done.

8. Now click Setup, then Display and make sure that Data and Decimal

have check marks beside them.Â Click on Setup, then Protocol and
make sure RTU is checked also.

9. Now configure the main window as below.

10. Now click on the menu item â€œActionâ€•, then Start

Poll.Â You may have to clear a popup window first, but you should

see results like below which shows our original data that was in our
Data File 32.

The register addresses are on the left and listed 40001 through 40020 and

each registers value is directly to the right of it.

Congratulations, you have just used a Windows software program called Modscan

acting as a Modbus Master device to go out and read data from our MVI46-MCM

moduleâ€™s Port 2 which is a Modbus Slave device.

NOTE : Based on my experience the MVIMCM for SLC500 is unable to be a

Slave and must be A MASTERÂ to communicate with other Modbus

PLC/Devices (Scadapack32, Micromotion, UltraSonic Flow Meter GM868..)

Learn Ladder Logic with a Free Version of RSLogix 500 and
RSEmulator 500
One of my most common questions is, â€œWhere can I get a free download of

RSLogix 500?â€•Â For any serious development with SLC500 or MicroLogix

there is no free option but there is a nice free option if you only want to learn

and/or program a MicroLogix 1000 or 1100.Â Programming a MicroLogix is very

very similar to programming a SLC500 or in that case a PLC5 too.Â

Allen Bradley offers as a free download a software package called RSLogix Micro

Starter Lite which is essentially the same programming environment as RSLogix

500.Â On top of that, they also offer RSLogix Emulate for free so that you

donâ€™t even need a PLC to run and test your ladder logic.Â Keep reading and

Iâ€™ll show you how to get the software and set it up.

Getting the Software

The RSLogix Micro Starter Lite software is only available as a download

at http://www.ab.com/programmablecontrol/plc/micrologix/downloads.html.Â If

you are starting from scratch and do not have the RSLinx software then download

the kit bundled with RSLinx Classic Lite.Â FYI, I find it a bit confusing but they

also sell software called RSLogix Micro Starter which supports the full

MicroLogix range.

If you do not have a MicroLogix 1000 or 1100 to play with then download the

RSLogix Emulate 500 software.Â Youâ€™ll be able to use this to simulate a real

PLC.

Note for Windows XP users:Â The bundled version of RSLinx only installs on

Windows Pro and is not supported on Windows XP Home versions.Â To get

around this I downloaded an older version of RSLinx Lite 2.50 from the Allen

Bradley software update

page http://www.rockwellautomation.com/support/webupdates/

Once youâ€™ve downloaded the software and extracted it then install RSLogix

Micro followed by the RSLinx Classic Lite software.Â Next, install the RSLogix

Emulate 500 software.

First Steps with RSLinx

RSLinx is the software RSLogix will use to communicate with your PLC or in our

case to the emulator.

Letâ€™s start by running the RSLinx software under the START > All Programs >

Rockwell Software > RSLinx > RSLinx Classic shortcut.Â Follow these steps to

set it up:

1. Under the Communications menu select Configure Drivers. Â Â
2. Under the Available Drivers Types select the â€œSLC 500 (DH485)

Emulator driverâ€� and click the Add Newâ€¦ button.Â
3. You can give the driver a name but I just leave it at the default of

EMU500-1.Â

http://www.ab.com/programmablecontrol/plc/micrologix/downloads.html
http://www.rockwellautomation.com/support/webupdates/

4. Leave the configuration options as Station Number 00 and click OK.

Your driver should now be running and look like the picture below.

Ok, thatâ€™s ready to go.Â Close the Configure Drivers dialog box and close

RSLinx.Â Actually RSLinx is now running in the background and youâ€™ll

probably see its little icon in the system tray.

RSLogix Micro Starter Lite

Now for the moment weâ€™ve all been waiting for--- creating some ladder

logic.Â Open the RSLogix Micro software with the START > All Programs >

Rockwell Software > RSLogix Micro English > RSLogix Micro

English shortcut.Â Create a brand new project by pulling down the File menu and

selecting New.Â Every project must start with a designated processor.Â

In my case Iâ€™ve chosen the simplest MicroLogix 1000 and then clicked the OK

button.Â FYI, if you ever work with the purchased version of RSLogix 500 then

there will be a lot more items in this hardware list.Â A blank project now opens

up.

Letâ€™s make a simple rung to test in our emulator.Â Make sure the cursor is on

the rung with the END on it and then click the New Rung icon in the instruction

toolbar.

Now click on the â€œExamine if Closedâ€• Â instruction to add it to the

rung.Â Double click on the question mark above it and enter I:0/0 as its input

address.Â Just leave the description pop up box empty by clicking OK.

http://www.plcdev.com/glossary/1?Array

Next, click on the Output Energize Â instruction to add it to the right side of the

rung.Â Double click on the question mark above it and enter O:0/0 as its output

address. Â Just leave the description pop up box empty by clicking OK.

You should now have something like below.

The next very important step is to verify the project with the Edit > Verify

Project menu item.Â This will compile the project and get it ready for the

emulator.

Save the project as something like Test.RSS in an easy place to find like My

Documents.

RSEmulator 500

The emulator lets us test our work by running a virtual PLC.Â Weâ€™ll be able to

download our program to it and run it in a very similar fashion to a real

PLC.Â Start the emulator with the START > All Programs > Rockwell Software >

RSLogix Emulate 500 > RSLogix Emulate 500 shortcut.Â Â The emulator is

pictured below.Â I know.Â It doesnâ€™t look like much but it gets the job done.

Select File > Open and open the RSLogix project you created earlier (I named

mine TEST.RSS).Â In the dialog box that pops up put the Station # as 1 and

click Ok.

Believe it or not but the emulator is now ready.Â Leave it running and go back to

your project in RSLogix Micro.

Testing the Ladder Logic

In RSLogix Micro Starter select the Comms > System Comms menu item.Â The

following dialog box will pop up.

In the left hand pane, drill down and select the â€œ01, MicroLogix 1000,

TESTâ€• processor.Â Yours might look a little different if you selected different

hardware or gave the processor a different name.Â For good measure make

sure Apply to Project is checked and then click on Download.Â When prompted to

go Online click on Yes.

If successful youâ€™ll see the ladder picture spinning round on the online

toolbar.Â To scan the ladder logic put the processor into Run mode by clicking on

the arrow to the right of mode status (REMOTE PROGRAM).

To test the ladder logic, change the input state by right clicking on the address and

selecting toggle bit.

http://www.plcdev.com/glossary/1?Array

You will see the instruction go green indicating it is true and it will make the

output instruction turn green also indicating the output is turned on.

Thatâ€™s it!Â You get all that for the cost of a download.Â Now break out the

manuals and start learning about all the different instructions.

RSLogix 5000 Tips and Tricks
Everybody enjoys nifty little tips and tricks to get their work done faster. This

listing is for Allen Bradley's RSLogix 5000 software. Feel free to add your own

tips and tricks using the 'add comment' link.

General
 To access Release Notes for this version of software, choose

Release Notes from the Help menu.
 The Quick View Pane, located below the Controller Organizer,

provides "thumbnail" information for the selected component.
 The Watch Pane, located below the language editor window,

provides monitoring for all tags referenced in the active routine
window.

 The Controller Organizer is dockable. That is, you can drag it to the
left or right side of the screen, or float it somewhere in between.

 Hide/show the Controller Organizer via a toolbar button to make
more display area for editors.

 RSLogix 5000 supports Cut/Copy/Paste/Drag/Drop of components
within the Controller Organizer as well as to other instances of
RSLogix 5000.

 Double-clicking on error messages displayed in the Error Window will
navigate you to where the error was encountered.F4 and Shift-F4
can be used to move between errors.

 You can reorder the columns in the tag editor by clicking on the title
and dragging it to a new position.

 To simultaneously display logic in multiple routines, select Window ->
New Window and then arrange the windows manually. Or select
Window -> Tile Horizontal.

 To remove a yellow triangle warning symbol on a device, first check
the connection status. If the status is "Connection is not scheduled",
re-open the RSNetWorx software. Return to RSLogix 5000 software
and the yellow triangle should be gone.

 On one computer, you can install and simultaneously launch (run)
multiple translated versions of RSLogix 5000 software.

 Once you do a partial import of rungs, add-on instructions, or user-
defined data types, you can't undo the import. If the import didn't
work as expected, close the project without saving.

 When you select a partial import, make sure to select the correct
rung or trend file. Both files have L5X extensions and the software
doesn't prevent you from selecting the wrong file. If you try to import
a rung where a trend is expected, or vice versa, the software does
display an error that the import failed.

 Partial import of rungs works in all ladder routines, including Add-On
Instructions.

 In version 15, the Tag Editor added support for New Window.
 To simultaneously display logic in multiple routines, select Window ->

New Window and then arrange the windows manually. Or select
Window -> Tile Horizontal.

Keyboard
 Keyboard shortcuts are listed in the Online Help, under the

"Navigating the Software" topic.
 You can use Ctrl+Page Down and Ctrl+Page Up to move between

tabs in a dialog or routine window.
 You can use Ctrl+Tab and Shift+Ctrl+Tab to move between multiple

RSLogix 5000 views.
 You can use Ctrl+G to invoke the Go To dialog. The Go To dialog is

convenient for navigating the software.

 You can use Alt+Insert to open the Language Element browser in
any of the language editors. You can also invoke this browser by
pressing the Insert key in the LD, SFC and FBD editors.

 You can use Ctrl+Space to invoke the Tag browser from within the
ST editor.

 You can use the Go To dialog (Ctrl+G) to quickly navigate to routines
called by the current routine and to routines that call the current
routine.

 In the Sequential Function Chart Editor, you can use the Routine
Overview (Ctrl+B) tool to view your entire SFC and help navigate to a
specific area of your chart.

 Double-clicking on error messages displayed in the Error Window will
navigate you to where the error was encountered. F4 and Shift-F4
can be used to move between errors.

 The Language Element browser is a shortcut to adding logic. In the
any of the language editors: use Alt+Insert, type the instruction
mnemonic, and press Enter. You can also invoke this browser by
pressing the Insert key in the LD, SFC and FBD editors. This short
cut can be much quicker than using the instruction toolbar.

 As you use the keyboard to move the cursor around grid cells, press
Alt+Down arrow to activate any controls that are active for that cell.
This works in all grid-based editors, such as the Tag Editor, Data
Monitor, etc. This gives you a way to access cell controls via the
keyboard, rather than using the mouse.

Controller Projects
 Whenever you go online using RSLogix 5000, changes made to

controller are simultaneously made to a temporary copy of the project
file (.ACD). Save makes these changes permanent. Therefore, an
upload is only necessary to obtain the latest copy of the tag data in
the controller.

 Both Rockwell Automation and third-party sample projects are
installed with RSLogix 5000. You can find them in the RSLogix 5000
Samples folder. These projects demonstrate program techniques and
code that you can use to program select modules.

 Avoid pointing one alias tag to another alias tag to ensure the
application maintains the appropriate references after an upload.

 Avoid pointing multiple alias tags to the same base tag to ensure the
application maintains the appropriate references after an upload.

 All tag names are downloaded and resident in the controller along
with your logic.

 On download, if the ControlNet schedule stored in the offline RSLogix
5000 project file is old, RSLogix 5000 will retrieve the latest

ControlNet schedule from the associated RSNetWorx project file. To
make an association to an RSNetWorx project file, use the
RSNetWorx tab in the Module Properties dialog of the ControlNet
scanner.

 RSLogix 5000 supports moving your project from one Logix
platform/controller to another.

 ACD, L5K, CSV, and L5X files are independent of which translated
version of RSLogix 5000 imports or exports the file. The software
doesn't create language-specific import/export files.

 Use any translated version of RSLogix 5000 software to go online to
a controller without having to re-download.

 In a safety controller, standard tags in a safety mapped relationship
follow safety restricted states. For example, a standard tag mapped
to a safety tag is read-only in a safety locked state.

 Use Add-On Instructions to initialize tag values to specific values at
the beginning of each routine or program scan. Then source protect
the AOI to assure that values are correctly initialized and not
overwritten manually.

 The order of members within a User-Defined Data Type affect the
memory size of the data type. Within the UDT, keep members of the
same data type together.

I/O Configuration
 Module icons in the I/O Configuration folder change to indicate the

module has faulted or the connection to the module has been
interrupted.

 To remove a yellow triangle warning symbol, first check the
connection status. If the status is "Connection is not scheduled", re-
open the RSNetWorx software. Return to RSLogix 5000 software and
the yellow triangle should be gone.

 To easily find a module in the Select Module Type dialog, simply start
typing any part of the module name or description. When you start
typing, the Find Module dialog is launched automatically.

 Use rack optimized communication formats for digital I/O modules to
minimize amount of controller memory and communications
overhead associated with these modules.

 RSLogix 5000 automatically creates controller tags when you create
an input or output module. You can reference these tags directly in
your logic.

 Use alias tags to assign names to specific input/output data and/or to
provide a short alternative to lengthy structure member names.

 When you configure an analog I/O module, hold the shift key as you
move the slider to increment HH, H, L, and LL values in whole
numbers.

 Copy I/O data to a User-Defined Type (UDT) so you can synchronize
I/O data with program scan. The UDT also enables easier mapping of
physical I/O.

Tasks, Programs and Equipment Phases
 An event task in Logix is similar to the processor input interrupt (PII)

in the PLC-5. Multiple event tasks can exist in the controller, each
configured to execute at the initiation of independent triggers.

 A periodic task in Logix is similar to the selectable timed interrupt
(STI) in the PLC-5. Multiple periodic tasks can exist in the controller,
each configured to execute at independent rates.

 Double-click on a state in an Equipment Phase to navigate to the
logic for that state.

 Use RSBizWare Batch software to create Equipment Phases. Use
the Equipment Editor to create the phases, define parameters, and
synchronize the phases with an RSLogix 5000 project.

 Use any programming language (Ladder, Structured Text, FBD, or
SFC) to program state routines in Equipment Phases.

 The fault routine for an Equipment Phase is the same as the fault
routine for a program. Use a fault routine to allow logic to run before
the controller faults due to a programming error.

 The Prestate routine runs all the time, even when the Equipment
Phase is not active.

 The Prestate routine for an Equipment Phase is optional. Use the
Prestate routine to execute the error detection logic for your phases.

 You don't have to implement all the available states in an Equipment
Phase. On the Equipment Phases properties, check the "Complete
State if not implemented" option.

 In the Phase Monitor, the states you can write code have action
names and have a command word leading into the state, such as
Start leads to the Running state. You add routines to these states.
Waiting states don't require routines. The phase waits for a command
to move to the next state. For example, Idle and Hold.

Tags, Data Types and Other Data
 As you organize, add, or delete members of a User-Defined Data

Type, the software adjusts the associated tag members and values
accordingly so that remaining members retain their values.

 In the tag browser, click the >> button to display the tag filter. Use the
tag filter to display unused tags or tags of a particular data type.

 The tag browser filters tags in some situations. If you don't see a tag
you expect, change the tag filter.

 In version 15, the Tag Editor added support for New Window.
 You can use arrays to do indirect addressing. RSLogix 5000 supports

arrays of one, two, and three dimensions.
 You can create a recipe by creating a new data type and then

creating a tag which uses that data type. Your new data type can
contain descriptive field names.

 RSLinx uses memory in a Logix controller to read data values. Use
the following equation to estimate the memory needed: (1.5Kbyte +
(Number of individual tags * 45 bytes) + (Number of array or structure
tags * 7))

 The Watch Pane, located below the language editor window,
provides monitoring for all tags referenced in the active routine
window.

 You can trend a tag by right-clicking the tag and choosing "Trend Tag
".

 You can find all occurrences of a tag by right-clicking the tag in logic
and choosing "Find All ".

 Logix controllers are optimized for the DINT and REAL data types.
Use these data types to avoid conversion overhead and optimize
performance.

 You can optimize the communication performance of acquiring data
from Logix controllers by consolidating multiple data values into a
User-Defined Data Type (UDT) or array.

 Indexed references to array elements add additional scan time
overhead to the application. Use single dimension arrays whenever
possible.

 When building a User-Defined Type (UDT), locate all bits or BOOLs
adjacent to each other to minimize the amount of controller memory
required to store the data.

 RSLogix 5000 automatically creates controller tags when you create
an input or output module. You can reference these tags directly in
your logic.

 Use alias tags to assign names to specific input/output data and/or to
provide a short alternative to lengthy structure member names.

 Avoid pointing one alias tag to another alias tag to ensure the
application maintains the appropriate references after an upload.

 Avoid pointing multiple alias tags to the same base tag to ensure the
application maintains the appropriate references after an upload.

 Controller tags apply to the entire controller and can be referenced by
any program. Program tags apply only to individual programs. This

means program tags can have the same names in more than one
program, allowing programs to be copied and reused.

 You can reorder the columns in the tag editor by clicking on the title
and dragging it to a new position.

 All tag names are downloaded and resident in the controller along
with your logic.

 You can export (and import) tag definitions to a comma separated
value (CSV) file and manipulate them using external tool, e.g.
spreadsheet, text editor.

 For tables of bits (BOOL), use a DINT array to ensure full access via
the file and diagnostic instructions COP, DDT, FBC, etc.

 In a safety controller, standard tags in a safety mapped relationship
follow safety restricted states. For example, a standard tag mapped
to a safety tag is read-only in a safety locked state.

 The order of members within a User-Defined Type affect the memory
size of the data type. Within the UDT, keep members of the same
data type together.

Routines
 Logix supports four controller programming languages: Ladder,

Function Block Diagram, Structured Text, and Sequential Function
Chart.

 To simultaneously display logic in multiple routines, select Window ->
New Window and then arrange the windows manually. Or select
Window -> Tile Horizontal.

 Multiply the number of words in a PLC/SLC program times 18 to
estimate the amount memory (in bytes) needed in a Logix controller.

 To display context-specific instruction help, select an instruction or
element and press F1.

 The Language Element browser is a shortcut to adding logic. In the
any of the language editors: use Alt+Insert, type the instruction
mnemonic, and press Enter. You can also invoke this browser by
pressing the Insert key in the LD, SFC and FBD editors. This short
cut can be much quicker than using the instruction toolbar.

 You can find all occurrences of a tag by right-clicking the tag in logic
and choosing "Find All ".

 You can use the Go To dialog (Ctrl+G) to quickly navigate to routines
called by the current routine and to routines that call the current
routine.

 You can drag and drop from the instruction toolbar in any of the
language editors. In SFC editor, the elements auto-connect.

 Use the CPS instruction to provide buffering of communications and
I/O data to minimize impact of asynchronous data arrival.

 For tables of bits (BOOL), use a DINT array to ensure full access via
the file and diagnostic instructions COP, DDT, FBC, etc.

 Controller tags apply to the entire controller and can be referenced by
any program. Program tags apply only to individual programs. This
means program tags can have the same names in more than one
program, allowing programs to be copied and reused.

 In the Sequential Function Chart Editor, you can use the Routine
Overview (Ctrl+B) tool to view your entire SFC and help navigate to a
specific area of your chart.

 Logix controllers perform a prescan of logic on startup to perform
initialization. A tag used as an index can cause a startup fault if its
value is larger than the array length. Use a Fault routine to detect and
reset this condition.

 In the Sequential Function Chart Editor, you can use the indicator tag
field in an action to specify a tag value to monitor during execution.

 In the Sequential Function Chart Editor, you can select multiple SFC
elements and use the Layout SFC Elements feature to automatically
rearrange the selected elements as needed to provide adequate
spacing, avoid page boundaries, and left or center justify branches.

 In the Sequential Function Chart Editor, you can change the order in
which selection branch legs are evaluated from the Set Sequence
Priorities dialog.

 Refer to the Online Help for the Action Properties dialog - General
Tab Overview for a useful timing diagram that explains how the
various action qualifiers affect the execution of an action.

 You can customize the auto-naming of Sequential Function Chart
Steps, Actions, Transitions, and Stop elements from the Workstation
Options and Routine Properties dialogs.

 You can attach text boxes to language elements in FBD and SFC
logic to maintain their relative positions if you move logic.

 You can use Ctrl+Space to invoke the Tag browser from within the
ST editor.

 Comments in Structured Text are downloaded to the controller. This
includes comments in Structured Text routines and embedded
Structured Text in SFC routines.

 In the Structured Text Editor, you see the words colored to indicate
keywords, tag names, and other recognized words. You can change
the colors used by the editor by choosing Options from the Options
menu.

 In the Structured Text Editor, you can configure the instruction's
parameters by right-clicking an instruction name and choosing
"Instruction Properties".

 You can use instructions available in Ladder and Function Block
Diagram routines also in Structured Text routines.

 You can configure the sheet size for your Function Block Diagram or
Sequential Function Chart routines from the Routine Properties
dialog.

 In the Function Block Editor, you can configure the block's
parameters by clicking the Browse (...) button on the upper right side
of the block.

 RSLogix 5000 supports pending edits on multiple rungs when online
editing ladder logic.

 When editing ladder routines, you can create logic using ASCII (for
example: "XIC MYTAG") by either typing when a rung is selected,
pressing the Enter key when a rung is selected, or double clicking to
the left of a rung.

 In the Ladder Diagram Editor, you can insert a branch level above
the current level by right clicking the left side of the branch and select
Add branch. To insert a branch level below the current level, right
click the right side of the branch and select Append New Level.

 Partial import of rungs works in all ladder routines, including Add-On
Instructions.

 When performing a partial import of rungs, change tag names to
create new tags in the imported logic.

 Once you do a partial import of rungs, add-on instructions, or user-
defined data types, you can't undo the import. If the import didn't
work as expected, close the project without saving.

 On a partial import of rungs, the exported data values are also
imported. This includes configured message instructions. Partial
imports/exports can save time versus copying and pasting since
copying and pasting does not copy data values.

 Copy pieces of logic into other applications like Microsoft Word in a
bitmap or metafile format.

 If you want a subroutine to execute every scan, copy the first
instruction and paste it right next to the original instruction. Use the
same tags on the duplicate instruction as on the first instruction. Then
insert an AFI instruction before the duplicate.

 To copy a group of rungs to paste into another routine later, select
the rungs and drag them to the desktop. This copies the rungs into a
file that you can later drag into another routine.

 You can drag components from the Controller Organizer into the
Ladder Editor instruction.

 Double click or press Enter at the end of a ladder rung to create and
start a textual edit of that rung.

 To drag a language element from one routine to another, drag the
element over the routine tabs at the bottom of the editor to switch the
routine.

Add-On Instructions
 To display the logic of an Add-On Instruction, select the instruction

and use the context menu (right click) to open the logic.
 You can drag an Add-On Instruction from the Controller Organizer

into any language editor.
 Copy an Add-On Instruction Definition from one project and paste

into another to move that AOI and referenced AOIs in to the project.
 Use Add-On Instructions to initialize tag values to specific values at

the beginning of each routine or program scan. Then source protect
the AOI to assure that values are correctly initialized and not
overwritten manually.

 Use source protection on an Add-On Instruction to protect local tags,
data and logic.

Communications
 Reserve 20% or more of the controller's memory to accommodate

communications and changes in future Logix controller firmware
releases.

 Use rack optimized communication formats for digital I/O modules to
minimize amount of controller memory and communications
overhead associated with these modules.

 Use the CPS instruction to provide buffering of communications and
I/O data to minimize impact of asynchronous data arrival.

 On download, if the ControlNet schedule stored in the offline RSLogix
5000 project file is old, RSLogix 5000 will retrieve the latest
ControlNet schedule from the associated RSNetWorx project file. To
make an association to an RSNetWorx project file, use the
RSNetWorx tab in the Module Properties dialog of the ControlNet
scanner.

 When working with multiple controller projects in different chassis,
use RSLinx shortcuts to identify those chassis with meaningful
names.

Drives and Motion
 RSLogix 5000 integrated motion supports camming, gearing, single-

axis, and multi-axis instructions in Ladder Diagram, Structured Text,
and Structured Text embedded in Sequential Function Charts.

 Execute motion direct commands directly from the context menu for
any configured motion axis. The motion direct commands let you

control motion instruction execution without creating or adding logic.
This can be useful when first commissioning an axis or drive.

 To tune motor and drive parameters, such as gains for velocity and
acceleration loops, as well as load dynamics, use the Tune tab or the
MRAT and MAAT instructions. You can use the Tune tab in either
Remote Program or Remote Run.

 The software automatically populates some SERCOS drive
parameters when you configure an Axis_Servo_Drive. Display the
axis properties to view or edit these parameters.

 In a SERCOS drive's configuration, you can change the number of
counts returned per revolution to make the counts per inch or degree
an rational number.

 In a motion system, you can copy over all motion hardware from an
existing project to a new project without losing any axis settings or
tuning. First drag the motion control module over to the new project.
Then, drag any drives, the Motion Group, and then the axes.

Optimizing Performance
 Logix controllers are optimized for the DINT and REAL data types.

Use these data types to avoid conversion overhead and optimize
performance.

 You can optimize the communication performance of acquiring data
from Logix controllers by consolidating multiple data values into a
User-Defined Type (UDT) or array.

 Indexed references to array elements add additional scan time
overhead to the application. Use single dimension arrays whenever
possible.

 Reserve 20% or more of the controller's memory to accommodate
communications and changes in future Logix controller firmware
releases.

 Use rack optimized communication formats for digital I/O modules to
minimize amount of controller memory and communications
overhead associated with these modules.

 Use the CPS instruction to provide buffering of communications and
I/O data to minimize impact of asynchronous data arrival.

 If the memory estimation button is disabled, it means that your
estimation is up to date. This happens after an estimate, but it also
happens when you go offline with the controller because the offline
memory numbers reflect actual use.

 The order of members within a User-Defined Type (UDT) affect the
memory size of the data type. Within the UDT, keep members of the
same data type together.

Project Documentation
 Comments in Structured Text are downloaded to the controller. This

includes comments in Structured Text routines and embedded
Structured Text in SFC routines.

 You can print RSLogix 5000 views by clicking on the view and then
pressing Ctrl+P or choosing Print from the File menu.

 When you print FBD logic, the editor automatically makes the logic fit
the page. A 2:1 ratio is generally readable. For example, set the FBD
sheet size to 11 x 17 (B Size) and print on 81/2 x 11 size paper.

 Copy pieces of logic into other applications like Microsoft Word in a
bitmap or metafile format.

Security
 If you are have trouble downloading a project even though you have

privileges, make sure that you have the project and that you are
online with the controller.

 If you can't access routine source protection when security is
enabled, ask your administrator to grant you "Routine: Modify
Properties" to obtain access.

 If your system uses FactoryTalk Security with RSLogix5000 software,
version 16, software users can log into and log off of RSLogix 5000
software.

 If security functions are enabled, you must have appropriate access
to import rungs or to copy/paste tags and data.

The Logix5000 Essential Manuals
The Allen Bradley Logix5000 family (ControlLogix, CompactLogix, FlexLogix,

SoftLogix) has some very good manuals. If you are just starting out or need a

refresher here are the key manuals and the order I would read them. If you have

RSLogix 50000 installed then you will find some of these in the Help > Online

Books menu. Revision 16 also has some great videos in the Learning Center.

The Basics

For starters there is the Quick Start manual.

 Logix5000 Controllers Quick Start

The Essentials

If you are getting into programming and designing a system then you'll want to

start off with the Common Procedure Manual. It has a lot of helpful examples

http://literature.rockwellautomation.com/idc/groups/literature/documents/qs/1756-qs001_-en-p.pdf

dealing with all aspects of the system.

 Logix5000 Controllers Common Procedures Programming Manual

Next comes the nitty gritty of each instruction. It's a good idea to at least peruse all

the instructions so you have an idea of what is available.

 Logix5000 Controllers General Instructions Reference Manual

 Logix5000 Process Control and Drives Instructions Reference Manual

 Logix5000 Controllers Motion Instructions

 GuardLogix Safety Application Instruction Set Reference Manual

An often overlooked manual but filled with great information for getting the most

out your designs is the Design Considerations Reference Manual. Certainly a must

read if you are knee deep in the development and programming of Allen Bradley

PLCs.

 Logix5000 Controllers Design Considerations Reference Manual

Hardware Specifics

Specifics for the hardware can be found in the User Manuals and Installation

Instructions for the PLC.

ControlLogix
 ControlLogix System User Manual

 ControlLogix Installation Instructions

 ControlLogix Controller and Memory Board Installation Instructions

CompactLogix
 CompactLogix System User Manual

 CompactLogix 1769-L20, 1769-L30 Installation Instructions

 CompactLogix 1769-L32E, 1769-L35E Installation Instructions

 CompactLogix 1769-L32C, 1769-L35CR Installation Instructions

FlexLogix
 FlexLogix System User Manual

 FlexLogix Controllers Installation Instructions

SoftLogix
 SoftLogix System User Manual

 SoftLogix Controllers Installation Instructions

GuardLogix
 GuardLogix Controllers User Manual

 GuardLogix Controllers Installation Instructions

http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm001_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm003_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm006_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm007_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm095_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm094_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1756-um001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/1756-in101_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/1756-in101_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1769-um011_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/1769-in047_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/1769-in020_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/1769-in070_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1794-um001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/1794-in002_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1789-um002_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/1789-in001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1756-um020_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/1756-in045_-en-p.pdf

Networking

If you are deciding on which network to use then see the Design

Considerations manual and the section "Determine the Appropriate Network".

Otherwise, for existing networks the following are helpful.

Ethernet/IP
 Ethernet Design Considerations for Control System Networks

 EtherNet/IP Modules in Logix5000 Control Systems User Manual

 Guard I/O EtherNet/IP Safety Modules User Manual

ControlNet
 ControlNet Modules in Logix5000 Control Systems

DeviceNet
 DeviceNet Modules in Logix5000 Control Systems User Manual

 Guard I/O DeviceNet Safety Modules

The links are from the AB site so they are the latest and greatest manuals. Let me

know if any of them are broken or if I forgot one you think is essential.

User Defined Data Types (UDTs) and OOP
by John Schop

For years now, Object Oriented Programming paradigm (or OOP) has been a

commonly used programming practice, and has of course found its way into

industrial automation as well.

In the mean time, most PLC manufacturers have found ways to make the

programmers life easier by introducing User Defined Types or UDTs. The name

says it all; it is a â€˜typeâ€™ that you, the programmer, can define all by yourself.

This means that your programming environment will not only have the regular

integers (INT) and Booleans (BOOL), but could also have a â€˜VALVEâ€™ type

or a â€˜MOTORâ€™ type.

I canâ€™t speak for other brands of PLCâ€™s, but the Allen Bradley

ControlLogix series of PLCâ€™s, together with RSLogix 5000 programming

software, makes it very easy to work with these UDTs, and since the introduction

of RSLogix version 17 earlier this year, it is now even possible to edit your UDTs

while online with a running system.

The Controller Organizer has a folder called Data Types > User-Defined with all

the UDTs in the project.

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm094_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm094_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/so/enet-so001_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/enet-um001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1791es-um001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/cnet-um001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/dnet-um004_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1791ds-um001_-en-p.pdf
http://www.plcdev.com/contact
http://www.plcdev.com/contact
http://www.plcdev.com/glossary/1?Array

I am of the opinion that every PLC program should rely heavily on UDTs to

improve readability, and if you are an OOP adept, it can be a great help to organize

your classes.

Letâ€™s go over the fundamentals of OOP for a little bit:

 Classes: Classes define the abstract characteristics and behavior of
an object. For example, a simple â€˜VALVEâ€™ class would have
the characteristics (or attributes) that it can be open or closed
(the things it can be), and as far as behavior goes, it could have
the methods â€˜to openâ€™ and â€˜to closeâ€™ (the things it can
do)

 Objects: An object is an instance (occurrence) of a class. In our
example, there could be a Valve_001 and a Valve_002, which are
both instances of the class â€˜VALVEâ€™, with the same attributes
and methods.

Of course the definition of OOP goes a lot further than this. There is a very

understandable explanation here: http://en.wikipedia.org/wiki/Object-

oriented_programming#Fundamental_concepts for those who would like to read

more. For now, letâ€™s leave it at this, and see how we can apply this to an

industrial environment.

If you look at a valve as an object in a typical industrial automation environment,

you should note the following:

 It has inputs and outputs that are specific for the object (proximity
switches and solenoids).

 It can be either â€˜openâ€™ or â€˜closedâ€™
 You can tell it to go â€˜openâ€™ or â€˜closeâ€™.
 It could have an alarm timer, that would tell us if the valve did not

open or close in a given time period after a command.
 It might have interlocks, which allow the valve to open or close under

certain conditions.

http://en.wikipedia.org/wiki/Object-oriented_programming#Fundamental_concepts
http://en.wikipedia.org/wiki/Object-oriented_programming#Fundamental_concepts

A UDT for this class, would fit all these properties and methods in one simple

type. But, as always, we can expect further complications of the class

â€˜VALVEâ€™ during the realization of a project. To be as flexible as possible, I

highly recommend the practice of nesting UDTâ€™s, which will become clear

along the way.

Letâ€™s start with defining our class, and keep in mind that it will have to be

easily accessible for maintenance people or other programmers.

If we start at the I/O end, the best method is to create sub-classes called

VALVE_IN and VALVE_OUT, which will contain our I/O.

The following example uses RSLogix5000 V16. First, create the sub-classes. From

the File menu select New Component > Tag. The following dialog box appears to

create and edit the members of the UDT.

http://www.plcdev.com/glossary/1?Array

Now, make a UDT called VALVE, and â€˜nestâ€™ these sub-UDTs in it:

As you see, I am allowed to take the types I just created as the data type in this

UDT. The real advantage of this feature will become clear if you create a object

called Valve001 of the type VALVE, and look at the object in the â€˜monitor

tagsâ€™ window:

Wow! Just by creating a new tag of the type VALVE, it gets all these I/O points

right away, and referenced in the program:

Of course, going further with this concept, everything for a valve can be included

in one object. Allow me to skip some steps, and show you a possible final result:

The â€˜VALVEâ€™ class is now contained in a UDT called VALVE, which looks

like this:

As you see, the class VALVE now consists of the sub-classes VALVE_IN,

VALVE_OUT, VALVE_TIMER, VALVE_STATUS, etc.

And an instance of this class, the object Valve001, would look like this:

While adding stuff to my class, I did not have to re-create the object Valve001.

RSLogix updated it for me, so all the properties and methods are available in my

program.

Now, letâ€™s say youâ€™re working on this project with a couple hundred

valves, and the customer decides to go with a different type of valve, that also has

an analog input, that tells us the exact position of the valve. All we have to do is

modify our VALVE_IN sub-class to add this to every instance of the type

VALVE:

Of course, you would still have to write code to tell your program what to do with

that information, but that is also the reason why PLC programmers still have a job.

For somebody that is not familiar with your program, it might be confusing to look

at all your UDTâ€™s. We just made eight UDTâ€™s for one simple valve class!

But remember, you only have to do this during the design phase. Once you have a

solid design for all your classes (and made sure their names are self-explanatory),

you will never have to look at your UDT folder again, and creating a new instance

will be a breeze.

Connecting Excel to ControlLogix
by John Schop

Have you ever lost data in a CLX processor, because you downloaded new code?

Unfortunately, when you donwload a program to a ControlLogix processor, you

also download the values of the tags (variables).

A solution to this problem that could be useful, is an Excel sheet that reads and

writes values to the ControlLogix processor using the DDE/OPC capabilities of

RSLinx.

In this article, I will show you how to create one of these sheets for your projects.

Here's what you'll need:

 Microsoft Excel, with some basic knowledge about programming
macro's in Visual Basic

http://www.plcdev.com/glossary/1?Array

 RSLinx (not the 'Lite' version, because that does not have DDE/OPC
capabilities)

 A ControlLogix processor of course

Let's fire up RSLogix first, and create a bunch of tags with values. In this example,

I created 2 arrays, of the types DINT and REAL, each with a length of [10] tags.

These arrays I filled with some values:

I'm not going to do anything with the PLC program, I just need some data in a

number of tags.

Next, we're going to set up a DDE/OPC Topic in RSLinx. Depending on the

version of RSLinx you use, it might look slightly different, but you should be able

to follw this with the screenshots.

Assuming that you know how to setup RSLinx initally to get online with your

controller, I've skipped some steps. The setup I use looks like this in RSLinx:

http://www.plcdev.com/glossary/1?Array
http://www.plcdev.com/glossary/1?Array

As you can see, I have a 10 slot CLX rack, with a 1756-ENBT card in slot 1

(address 134.200.211.16), and two processors, one in slot 0, and one in slot 2. The

one in slot 2 is the processor we are going to use for this exercise.

Now, open up the DDE/OPC topic configuration by clicking 'DDE/OPC' and then

'Topic Configuration' in the top menu of RSLinx.

I'm going to create a new DDE/OPC topic called 'EXCEL_TEST', and use the

Logix5550 processor in slot 2 as the data source. In order to do this, you have to

click the 'New' button, give the topic the desired name, and make sure the

processor in slot 2 is selected as the source before you click 'Done'

To test if your setup is working, at this point you can use the OPC test client

provided with RSLinx. I'm not going into detail about that, but I did make sure this

worked before continuing with the next step, creating the Excel sheet.

Let's start up good old Excel, and create a new workbook. On this workbook, place

a new command button. You can find the Command Button control in the 'Control

Toolbox' toolbar in Excel. When you have the button, right click on it and choose

'View Code'. This will take you to the Visual Basic Editor:

First, create a function that will open the DDE topic to Excel:

Now, if I call this function from the CommandButton1_Click event, it will open

the link to RSLinx:

The variable 'rslinx' will hold the number of the open channel.Â All subsequent

DDE functions use this number to specify the channel.

To save you all the steps to program the rest of the code, here is the final code to

get the array of REALs out of the controller, and put them in cells D2 â€“ D11, and

the array of DINTs in cells E2-E11.

Now we know how to read, it would of course be a lot of fun if we could write

values as well. I would like to be able to change the values in the cells, and then hit

a 'Write Data' button.

First, make another button on the sheet (mine looks like below now)

And then write some code for the button:

The way this is implemented is of course very rudimentary, but once you get the

concept, the sky is the limit.

To make this easier on everybody, I've included the Excel file with the code

already in it. The only thing you have to do to make this Excel sheet work, is make

sure there is an DDE/OPC topic in your RSLinx setup called 'EXCEL_TEST', and

the arrays REAL_Array and DINT_Array in your controller (of at least length 10).

http://www.plcdev.com/files/plcdev/clx_to_excel_example.xls
http://www.plcdev.com/files/plcdev/clx_to_excel_example.xls

