Advanced Diploma of Plant Engineering (DPE)

Module 8 Thermodynamics, Compressor, Fans and Blowers

Instructions for using Thermoptim

V3

Created By:	Louis-Philippe Rouillard	Date:	9/12/13
Reviewed By:	Steve Steyn	Date:	01/07/14

DPE Module 8 Instruction For using the software Thermoptim (DEMO)

1. Initial Setup

Video with instructions: https://www.youtube.com/watch?v=9otvizpKMVo

- Logon to Electromeet
- Open Thermoptim demo
 - The icon is located on the desktop

• Alternatively, you can download the software from Moodle.

(Values given below are defaults/examples, use values from Assignment, where given; NO SAVING SUPPORTED)

2. Compression

The refrigerator cycle is composed of four processes. We will start by modelling the first one: the compressor.

Start by creating two points entitled "1" and "2"

0	To crea	ate a	point,	doub	le-click the	heading <i>point name</i>	
	S THERMOPTIM	Java. Copyright R.	Gicquel 1999-201	13			
	Project files Re	esult files Speci	al Help				
	Project name				Associated diagram		
	POINTS						
	point name	substance	P (bar)	T (*C)			
\sim							

- Enter the project name: A simple refrigerator cycle. (This is for the first time only
- Enter the point name in this case 1.
- Enter the point substance in the substance field. For this

exercise, enter R134a and press **Enter**. (The substance

name R134a is cAsE seNsiTive)

- Enter the temperature (...) and pressure (...) (Values here are given in your module assignment, if not stipulated, use defaults)
- o Click Save.

• Repeat for point 2.

- Same temperature (...) and pressure (...)
- Create a process called "compressor". Similarly to creating a point, to create this process, double-click the heading *process name*. A window appears.
 - Select compression and click OK.

- o Enter the process name. "compressor"
- Double-click the heading *inlet point* and select point 1.
- Double-click the heading *outlet point* and select point 2.
- Enter polytropic efficiency (from Assignment) in isentropic eff.
- Select Set the efficiency and calculate the process.
- o Click Calculate.
- Record the outlet temperature and the polytropic exponent n. Then click Save.

1	process	ty	pe compression		<	>	Save
	eneray tyr	e useful	set flow		Su	opress	Close
1			flow ra	te 1	Closed s	system	observed
_	inlet point			·	open sy	stem	/
		display	m Δh	0		Calculat	e 🖌
	T (°C)	0	Q	0			
	P (bar)	0		(adiabati	in a	0.000	adiabatia
	h (kJ/kg)	0		isentropic re	forence		aulabalic
	quality	0		· isentropic re	sierence	U polytrop	
1	outlet poir	nt		isentro	pic eff.	1	K
		display		polytrop	pic exponent	0	
				compre	ession ratio (>=	1)	calculated
	T (°C)	0		0			⊖ set
	P (bar)	0		C-44b			k
	n (KJ/KG)	0		Calculate the e	ficioney the or	calculate the	e process 🔍
	quality	U		Calculate the e	fficiency, the of	itiet point bei	ng known 💛

- Insert the compressor diagram in the Diagram editor for Thermoptim.
 - Select the icon *compression* on the tool bar. And click on the drawing field to add it.
 - o Call it this component "compressor."

- On the outlet port tab, enter the outlet point (2) and the substance *R134a*.
- Click Apply to confirm.

3. Condenser

The condenser is divided into two sub processes. We will call the first one desuperheating.

- Start by creating a point entitled "3a".
 - Follow the same steps as above. Enter the point name, substance and pressure. Click Save to confirm.
- Create a process called "desuperheating". To create this process, double-click the heading *process name*. A window appears.
 - Select exchange and click OK.
 - Enter the process name "desuperheating".
 - Double-click the heading *inlet point* and select point 2.
 - Double-click the heading *outlet point* and select point 3a.
 - Assuming that Δh is -19.23 kJ/kg. Enter this value (in $m \Delta h$ (W) and select Set $m \Delta h$ and modify the outlet point.
 - Click Calculate and Save.
 - Record this value.
- Insert the exchanger diagram in the Diagram editor for Thermoptim.
 - Select the icon exchange on the tool bar. And click on the drawing field to add it.
 - Call it this component "desuperheating."
 - On the outlet tab, enter the outlet point name (3a) and the substance *R134a*.
 - Click Apply to confirm.

The second process is called condenser

- Start by creating a point entitled "3".
 - Follow the same steps as above. Enter the point name, substance (press enter) and pressure. Assume the room temperature T(°C) is 25°C. Click Save to confirm.
- Create a process called "condenser". To create this process, doubleclick the heading *process name*. A window appears.
 - Select exchange and click OK.
 - Enter the process name "condenser".
 - Double-click the heading *inlet point* and select point 3a.
 - Double-click the heading *outlet point* and select point 3.
 - Click Calculate and Save.
- Insert the exchanger diagram in the Diagram editor for Thermoptim.
 - Select the icon exchange on the tool bar. And click on the drawing field to add it.

- o Call it this component "condenser."
- On the outlet tab, enter the outlet point (3) and the substance R134a.
- Click Apply to confirm.

4. Throttling

The next process is to reduce the temperature and pressure of the refrigerant using a throttle valve.

- Start by creating a point entitled "4".
 - Follow the same steps as above. Enter the point name, substance ("*R134a*" press enter) and *pressure*. Assuming the outlet temperature is -10 °C. Click Save to confirm.
- Create a process called "throttling".
- To create this process, double-click the heading *process name*. A window appears.
 - Select throttling and click OK.
 - Enter the process name "throttling".
 - Double-click the heading *inlet point* and select point 3.
 - Double-click the heading *outlet point* and select point 4.
 - Click Calculate.
 - Record the outlet temperature and click Save.
- Insert the throttle diagram in the Diagram editor for Thermoptim.
 - Select the icon *throttling* $\stackrel{\scriptstyle{\scriptstyle{\frown}}}{=}$ on the tool bar. And click on the drawing field to add it.
 - Call it this component "throttling."
 - On the outlet tab, enter the outlet point (4) and the substance R134a.
 - Click Apply to confirm.

5. Refrigeration effect

A last process is required to complete the system.

- Create a process called "refrigeration effect". To create this process, double-click the heading *process name*. A window appears.
 - Select exchange and click OK.
 - o Enter the process name "refrigeration effect".
 - Double-click the heading *inlet point* and select point 4.
 - Double-click the heading *outlet point* and select point 1.
 - Click Calculate and Save.
- Insert the exchanger diagram in the Diagram editor for Thermoptim.
 - Select the icon *exchange* on the tool bar. And click on the drawing field to add it.
 - Call this component "refrigeration effect"
 - \circ On the outlet tab, enter the outlet point (1) and the substance.
 - Click Apply to confirm.

6. Completing the diagram

- Start by connecting all components together.
 - Make sure that the inlet point is blue and the outlet point is green. If you need to flip a component, select it and press F1.
 - To draw a connect line, click on a green square and drag until you reach the blue square of the component you want to connect to.
- The *desuperheating* and *condenser* process exchange heat with the outside air.
 - To draw this, insert a utility icon **Q** and call it **outside air**.
 - Click Apply to confirm.
 - To connect the condenser and desuperheater to the outside air, click on the centre of an exchanger and drag the line to the centre of the utility. A blue line should appear. Repeat for the other exchanger.

0

- The heat been exchanged at the cold chamber is represented by the process named *refrigeration effect*. To insert the cold chamber, insert a utility diagram call it *cold chamber*. Then connect it to the refrigeration effect icon.
- If you change values, remember to click the "Recalculate" button.
- Double-check that the calculated values more-or-less reflect your initial parameters (Slight variations due to simulation variations)